F. Qiu, S. Michizono, T. Miura, Toshihiro Matsumoto, M. Omet, Basuki Wibowo Sigit
{"title":"Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK","authors":"F. Qiu, S. Michizono, T. Miura, Toshihiro Matsumoto, M. Omet, Basuki Wibowo Sigit","doi":"10.1103/PHYSREVSTAB.18.092801","DOIUrl":null,"url":null,"abstract":"A disturbance observer (DOB)-based control for a digital low-level radio-frequency (LLRF) system in a compact energy recovery linac (cERL) at KEK has been developed. The motivation for this control approach is to compensate for or suppress the disturbance signal in the rf system such as beam loading, power supply ripples, and microphonics. Disturbance signals in specified frequency ranges were observed and reconstructed accurately in the field-programmable gate array and were then removed in the feedforward model in real time. The key component in this DOB controller is a disturbance observer, which includes the inverse mathematical model of the rf plant. In this paper, we have designed a DOB control-based approach in order to improve the LLRF system performance in disturbance rejection. We have confirmed this approach in the cERL beam commissioning.","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":"178 1","pages":"092801"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.092801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
A disturbance observer (DOB)-based control for a digital low-level radio-frequency (LLRF) system in a compact energy recovery linac (cERL) at KEK has been developed. The motivation for this control approach is to compensate for or suppress the disturbance signal in the rf system such as beam loading, power supply ripples, and microphonics. Disturbance signals in specified frequency ranges were observed and reconstructed accurately in the field-programmable gate array and were then removed in the feedforward model in real time. The key component in this DOB controller is a disturbance observer, which includes the inverse mathematical model of the rf plant. In this paper, we have designed a DOB control-based approach in order to improve the LLRF system performance in disturbance rejection. We have confirmed this approach in the cERL beam commissioning.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.