A. O. Abidoye, I. M. Ajayi, F. L. Adewale, J. O. Ogunjobi
{"title":"Unbiased Modified Two-Parameter Estimator for the Linear Regression Model","authors":"A. O. Abidoye, I. M. Ajayi, F. L. Adewale, J. O. Ogunjobi","doi":"10.3329/jsr.v14i3.58234","DOIUrl":null,"url":null,"abstract":"This study centers on estimating parameters in a linear regression model in the presence of multicollinearity. Multicollinearity poses a threat to the efficiency of the Ordinary Least Squares (OLS) estimator. Some alternative estimators have been developed as remedial measures to the earlier mentioned problem. This study introduces a new unbiased modified two-parameter estimator based on prior information. Its properties are also considered; the new estimator was compared with other estimators’ Mean Square Error (MSE). A numerical example and Monte Carlo simulation were used to illustrate the performance of the new estimator.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.58234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study centers on estimating parameters in a linear regression model in the presence of multicollinearity. Multicollinearity poses a threat to the efficiency of the Ordinary Least Squares (OLS) estimator. Some alternative estimators have been developed as remedial measures to the earlier mentioned problem. This study introduces a new unbiased modified two-parameter estimator based on prior information. Its properties are also considered; the new estimator was compared with other estimators’ Mean Square Error (MSE). A numerical example and Monte Carlo simulation were used to illustrate the performance of the new estimator.