Urban area classification with quad-pol L-band ALOS-2 SAR data: A case of Chennai city, India

Dhanashri S. Kanade, V. S. K. Vanama, S. Shitole
{"title":"Urban area classification with quad-pol L-band ALOS-2 SAR data: A case of Chennai city, India","authors":"Dhanashri S. Kanade, V. S. K. Vanama, S. Shitole","doi":"10.1109/InGARSS48198.2020.9358951","DOIUrl":null,"url":null,"abstract":"Globally, 55% of the population lives in urban areas in 2018, and this number is expected to hit 68% by 2050. Earth Observation (EO) images based mapping of the urban regions is a critical parameter in the sustainable urban planning process. In recent years, rapid urban growth is experienced in the coastal metropolitan city of India-Chennai. The two land regions, having heterogeneous land uses, as high-rise high-density and medium-rise low-density of the Chennai city are taken as study area. The fully-polarimetric L-band ALOS-2 Synthetic Aperture Radar (SAR) data is used for rapid identification of the urban regions. With respect to this, a comparative assessment of the two supervised classification algorithms such as Wishart and Support Vector Machine (SVM) is presented. The same training data set is used for both algorithms, and a confusion matrix is created algorithm wise. The results of classification with the two classes as urban and non urban indicate that the SVM outperformed the Wishart supervised classification algorithm.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"70 1","pages":"58-61"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, 55% of the population lives in urban areas in 2018, and this number is expected to hit 68% by 2050. Earth Observation (EO) images based mapping of the urban regions is a critical parameter in the sustainable urban planning process. In recent years, rapid urban growth is experienced in the coastal metropolitan city of India-Chennai. The two land regions, having heterogeneous land uses, as high-rise high-density and medium-rise low-density of the Chennai city are taken as study area. The fully-polarimetric L-band ALOS-2 Synthetic Aperture Radar (SAR) data is used for rapid identification of the urban regions. With respect to this, a comparative assessment of the two supervised classification algorithms such as Wishart and Support Vector Machine (SVM) is presented. The same training data set is used for both algorithms, and a confusion matrix is created algorithm wise. The results of classification with the two classes as urban and non urban indicate that the SVM outperformed the Wishart supervised classification algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于四pol l波段ALOS-2 SAR数据的城市区域分类:以印度金奈市为例
2018年,全球55%的人口居住在城市地区,预计到2050年这一数字将达到68%。基于地球观测影像的城市区域制图是可持续城市规划过程中的一个关键参数。近年来,印度沿海大都市金奈经历了快速的城市发展。以金奈市高层高密度和中高层低密度这两个土地利用异质性较大的土地区域为研究区域。利用全偏振l波段ALOS-2合成孔径雷达(SAR)数据对城市区域进行快速识别。在此基础上,对Wishart和支持向量机(SVM)两种监督分类算法进行了比较评价。两种算法使用相同的训练数据集,并且创建了一个混淆矩阵。对城市和非城市两类的分类结果表明,SVM优于Wishart监督分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1