Projective non-negative matrix factorization for unsupervised graph clustering

C. Bampis, P. Maragos, A. Bovik
{"title":"Projective non-negative matrix factorization for unsupervised graph clustering","authors":"C. Bampis, P. Maragos, A. Bovik","doi":"10.1109/ICIP.2016.7532559","DOIUrl":null,"url":null,"abstract":"We develop an unsupervised graph clustering and image segmentation algorithm based on non-negative matrix factorization. We consider arbitrarily represented visual signals (in 2D or 3D) and use a graph embedding approach for image or point cloud segmentation. We extend a Projective Non-negative Matrix Factorization variant to include local spatial relationships over the image graph. By using properly defined region features, one can apply our method of unsupervised graph clustering for object and image segmentation. To demonstrate this, we apply our ideas on many graph based segmentation tasks such as 2D pixel and super-pixel segmentation and 3D point cloud segmentation. Finally, we show results comparable to those achieved by the only existing work in pixel based texture segmentation using Nonnegative Matrix Factorization, deploying a simple yet effective extension that is parameter free. We provide a detailed convergence proof of our spatially regularized method and various demonstrations as supplementary material. This novel work brings together graph clustering with image segmentation.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"36 1","pages":"1255-1258"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We develop an unsupervised graph clustering and image segmentation algorithm based on non-negative matrix factorization. We consider arbitrarily represented visual signals (in 2D or 3D) and use a graph embedding approach for image or point cloud segmentation. We extend a Projective Non-negative Matrix Factorization variant to include local spatial relationships over the image graph. By using properly defined region features, one can apply our method of unsupervised graph clustering for object and image segmentation. To demonstrate this, we apply our ideas on many graph based segmentation tasks such as 2D pixel and super-pixel segmentation and 3D point cloud segmentation. Finally, we show results comparable to those achieved by the only existing work in pixel based texture segmentation using Nonnegative Matrix Factorization, deploying a simple yet effective extension that is parameter free. We provide a detailed convergence proof of our spatially regularized method and various demonstrations as supplementary material. This novel work brings together graph clustering with image segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督图聚类的射影非负矩阵分解
提出了一种基于非负矩阵分解的无监督图聚类和图像分割算法。我们考虑任意表示的视觉信号(2D或3D),并使用图嵌入方法进行图像或点云分割。我们扩展了一个射影非负矩阵分解变体,以包括图像图上的局部空间关系。通过使用适当定义的区域特征,可以将我们的无监督图聚类方法应用于对象和图像分割。为了证明这一点,我们将我们的想法应用于许多基于图的分割任务,如2D像素和超像素分割以及3D点云分割。最后,我们展示了与使用非负矩阵分解的基于像素的纹理分割的唯一现有工作相媲美的结果,部署了一个简单而有效的无参数扩展。我们提供了空间正则化方法的详细收敛证明和各种证明作为补充材料。这项新颖的工作将图聚类与图像分割结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1