Can Simple GAs Solve Beehive Hidato Logic Puzzles? The Influence of Diversity Preservation and Genetic Operators

M. M. P. Silva, C. S. Magalhães
{"title":"Can Simple GAs Solve Beehive Hidato Logic Puzzles? The Influence of Diversity Preservation and Genetic Operators","authors":"M. M. P. Silva, C. S. Magalhães","doi":"10.1109/CEC.2018.8477841","DOIUrl":null,"url":null,"abstract":"Beehive Hidato is a fill-in logic puzzle, similar to Sudoku, with hexagonal grid cells. Some hexagons are pre-filled with fixed numbers, while the remaining has to be filled by the player such that consecutive numbers stay connected to form a “path”, from 1 to n, the largest number in the grid. Each Hidato problem has only one correct answer and, despite its simple rules, finding the solution for these problems can be quite challenging. In this work, we analyzed the importance of diversity preservation, as well as, the influence of commonly used permutation genetic operators in a simple genetic algorithm (GA) for solving Beehive Hidato problems. The algorithm was evaluated on 21 instances of Beehive Hidato problems, with different complexity levels, divided into two classes according to its size. We found PMX crossover and swap mutation as the best operators among the ones tested. Apart from that, the results indicate that the use of a diversity preservation technique has a significant role in GA performance, mainly for solving larger problem instances.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"78 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beehive Hidato is a fill-in logic puzzle, similar to Sudoku, with hexagonal grid cells. Some hexagons are pre-filled with fixed numbers, while the remaining has to be filled by the player such that consecutive numbers stay connected to form a “path”, from 1 to n, the largest number in the grid. Each Hidato problem has only one correct answer and, despite its simple rules, finding the solution for these problems can be quite challenging. In this work, we analyzed the importance of diversity preservation, as well as, the influence of commonly used permutation genetic operators in a simple genetic algorithm (GA) for solving Beehive Hidato problems. The algorithm was evaluated on 21 instances of Beehive Hidato problems, with different complexity levels, divided into two classes according to its size. We found PMX crossover and swap mutation as the best operators among the ones tested. Apart from that, the results indicate that the use of a diversity preservation technique has a significant role in GA performance, mainly for solving larger problem instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单的气体能解决蜂巢Hidato逻辑谜题吗?多样性保护与遗传算子的影响
蜂巢Hidato是一种填入式逻辑谜题,类似于数独,具有六边形网格单元。有些六边形预先填充了固定的数字,而剩下的六边形必须由玩家填充,这样连续的数字就可以形成一条从1到n的“路径”,这是网格中最大的数字。每个Hidato问题只有一个正确答案,尽管规则很简单,但找到这些问题的解决方案可能相当具有挑战性。在这项工作中,我们分析了多样性保护的重要性,以及常用的排列遗传算子在简单遗传算法(GA)中解决蜂巢Hidato问题的影响。该算法在21个不同复杂程度的hive Hidato问题上进行了评估,并根据其大小分为两类。我们发现PMX交叉和交换突变是测试中最好的算子。除此之外,结果表明,多样性保存技术的使用对遗传算法的性能有显著的作用,主要是为了解决更大的问题实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1