{"title":"On the Chemical Composition of Non-Metallic Inclusions in Ultra-Clean Gear Steels","authors":"D. Fuchs, D. Kohlschmid, T. Tobie, K. Stahl","doi":"10.1515/htm-2022-1004","DOIUrl":null,"url":null,"abstract":"Abstract Fisheye failures due to non-metallic inclusions can lead to the reduced endurance fatigue limit of case-hardened, shot-peened gears. Various approaches for preventing crack initiation at non-metallic inclusions are conceivable. As one approach, steel manufacturers have invested much effort in the steelmaking process to produce ultra-clean gear steels. Such ultra-clean gear steels were investigated in a gear research project. For each steel batch, different measures were taken during steel production to avoid or bind off non-metallic inclusions in order to reduce or even suppress the harmful effect of the non-metallic inclusions. However, the influence of the measures taken on the chemical composition of non-metallic inclusions in such ultra-clean gear steels is not investigated in the gear industry in detail so far. Therefore, in the framework of this publication, the chemical composition of non-metallic inclusions in ultra-clean gear steels is investigated. Furthermore, a comparison of the chemical analysis with the crack-initiating inclusions from the experimental investigations is performed.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2022-1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Fisheye failures due to non-metallic inclusions can lead to the reduced endurance fatigue limit of case-hardened, shot-peened gears. Various approaches for preventing crack initiation at non-metallic inclusions are conceivable. As one approach, steel manufacturers have invested much effort in the steelmaking process to produce ultra-clean gear steels. Such ultra-clean gear steels were investigated in a gear research project. For each steel batch, different measures were taken during steel production to avoid or bind off non-metallic inclusions in order to reduce or even suppress the harmful effect of the non-metallic inclusions. However, the influence of the measures taken on the chemical composition of non-metallic inclusions in such ultra-clean gear steels is not investigated in the gear industry in detail so far. Therefore, in the framework of this publication, the chemical composition of non-metallic inclusions in ultra-clean gear steels is investigated. Furthermore, a comparison of the chemical analysis with the crack-initiating inclusions from the experimental investigations is performed.