Liquid-Phase Methanol Synthesis: Catalysts, Mechanism, Kinetics, Chemical Equilibria, Vapor-Liquid Equilibria, and Modeling—A Review

IF 9.3 2区 化学 Q1 CHEMISTRY, PHYSICAL Catalysis Reviews-Science and Engineering Pub Date : 1994-11-01 DOI:10.1080/01614949408013929
A. Cybulski
{"title":"Liquid-Phase Methanol Synthesis: Catalysts, Mechanism, Kinetics, Chemical Equilibria, Vapor-Liquid Equilibria, and Modeling—A Review","authors":"A. Cybulski","doi":"10.1080/01614949408013929","DOIUrl":null,"url":null,"abstract":"Abstract Methanol is one of the basic chemicals which is manufactured at an annual rate of over 10 million tons. Plant capacity for methanol rises and can be greatly increased eventually when using methanol as a fuel. One of the potential future uses of methanol is as a peaking fuel in coal gasification combined cycle power stations (e.g., in integrated gasification combined cycle, IGCC). In this application, methanol would be produced from the CO-rich gas during periods of low power demand. This methanol would be burned, if necessary, as an auxiliary fuel in combined-cycles gas turbines during periods of peak power demand. Methanol is a clean-burning fuel with versatile applications. As a combustion fuel, it provides extremely low emissions. Methanol can also be used as a primary transportation fuel or a fuel additive.","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949408013929","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 80

Abstract

Abstract Methanol is one of the basic chemicals which is manufactured at an annual rate of over 10 million tons. Plant capacity for methanol rises and can be greatly increased eventually when using methanol as a fuel. One of the potential future uses of methanol is as a peaking fuel in coal gasification combined cycle power stations (e.g., in integrated gasification combined cycle, IGCC). In this application, methanol would be produced from the CO-rich gas during periods of low power demand. This methanol would be burned, if necessary, as an auxiliary fuel in combined-cycles gas turbines during periods of peak power demand. Methanol is a clean-burning fuel with versatile applications. As a combustion fuel, it provides extremely low emissions. Methanol can also be used as a primary transportation fuel or a fuel additive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液相甲醇合成:催化剂,机理,动力学,化学平衡,气液平衡和模型综述
摘要甲醇是基础化工产品之一,年生产量超过1000万吨。当使用甲醇作为燃料时,工厂的甲醇产能会上升,最终可以大大增加。甲醇的潜在未来用途之一是作为煤气化联合循环发电站的峰值燃料(例如,在综合气化联合循环中,IGCC)。在这一应用中,甲醇将在低电力需求期间由富co气体生产。如果有必要,这种甲醇将在电力需求高峰期间作为联合循环燃气轮机的辅助燃料燃烧。甲醇是一种清洁燃烧的燃料,用途广泛。作为燃烧燃料,它提供了极低的排放。甲醇也可用作主要运输燃料或燃料添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.30
自引率
2.80%
发文量
29
期刊介绍: Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.
期刊最新文献
L-Proline: Unraveling its Reactivity and Mechanistic Insights as an Organocatalyst in Multi-Component Synthesis: A Comprehensive Review Zeolite Catalysts for Biomass Valorization: Tuning of active sites for promoting reactivity Best practices in catalyst screening Multi-metallic electrocatalysts as emerging class of materials: opportunities and challenges in the synthesis, characterization, and applications Challenges of heterogeneous catalytic wet air oxidation processes and potential applications on emerging contaminants loaded wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1