The time series cluster kernel

Karl Øyvind Mikalsen, F. Bianchi, C. Soguero-Ruíz, R. Jenssen
{"title":"The time series cluster kernel","authors":"Karl Øyvind Mikalsen, F. Bianchi, C. Soguero-Ruíz, R. Jenssen","doi":"10.1109/MLSP.2017.8168187","DOIUrl":null,"url":null,"abstract":"This paper presents the time series cluster kernel (TCK) for multivariate time series with missing data. Our approach leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with empirical prior distributions. Further, we exploit an ensemble learning approach to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. In comparative experiments, we demonstrate that the TCK is robust to parameter choices and illustrate its capabilities of dealing with multivariate time series, both with and without missing data.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"58 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the time series cluster kernel (TCK) for multivariate time series with missing data. Our approach leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with empirical prior distributions. Further, we exploit an ensemble learning approach to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. In comparative experiments, we demonstrate that the TCK is robust to parameter choices and illustrate its capabilities of dealing with multivariate time series, both with and without missing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列簇核
提出了多变量缺失数据时间序列的聚类核算法。我们的方法利用了高斯混合模型(GMM)与经验先验分布增强的缺失数据处理特性。此外,我们利用集成学习方法通过组合多个GMM的聚类结果形成最终核来确保对参数的鲁棒性。在对比实验中,我们证明了TCK对参数选择具有鲁棒性,并说明了它处理多变量时间序列的能力,无论有无丢失数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1