{"title":"Non-parametric depth-based tests for the multivariate location problem","authors":"Sakineh Dehghan, Mohammad Reza Faridrohani","doi":"10.1111/anzs.12328","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, using the notion of data depth, we describe two classes of affine invariant test statistics for the one-sample location problem. The tests are implemented through the idea of permutation tests. The performance of the test against some competitors is investigated with an extensive simulation study. It is observed that the tests perform well when compared to their competitors for a wide spectrum of alternatives. If the proposed test is defined based on a moment-free depth function, then it is not inherently required to have finite moments of any order and the tests have broader applicability than some of the existing tests. The robustness property of the proposed tests is considered with a simulation study. Finally, we apply the tests to a real data example.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 2","pages":"309-330"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12328","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, using the notion of data depth, we describe two classes of affine invariant test statistics for the one-sample location problem. The tests are implemented through the idea of permutation tests. The performance of the test against some competitors is investigated with an extensive simulation study. It is observed that the tests perform well when compared to their competitors for a wide spectrum of alternatives. If the proposed test is defined based on a moment-free depth function, then it is not inherently required to have finite moments of any order and the tests have broader applicability than some of the existing tests. The robustness property of the proposed tests is considered with a simulation study. Finally, we apply the tests to a real data example.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.