{"title":"Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach","authors":"H. Rehman, N. Chandra, A. Abuzaid","doi":"10.15672/hujms.1066111","DOIUrl":null,"url":null,"abstract":"The cause-specific hazard function plays an important role in developing the regression models for competing risks survival data. Proportional hazards and additive hazards are the commonly used regression approaches in survival analysis. Mostly, in literature, the proportional hazards model was used for parametric regression modelling of survival data. In this article, we introduce a parametric additive hazards regression model for survival analysis with competing risks. For employing a parametric model we consider the modified Weibull distribution as a baseline model which is capable to model survival data with non-monotonic behaviour of hazard rate. The estimation process is carried out via maximum likelihood and Bayesian approaches. In addition to Bayesian methods, a class of non-informative types of prior is introduced with squared error (symmetric) and linear-exponential (asymmetric) loss functions. The relative performance of the different estimators is assessed using Monte Carlo simulation. Finally, using the proposed methodology, a real data analysis is performed.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"27 3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1066111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cause-specific hazard function plays an important role in developing the regression models for competing risks survival data. Proportional hazards and additive hazards are the commonly used regression approaches in survival analysis. Mostly, in literature, the proportional hazards model was used for parametric regression modelling of survival data. In this article, we introduce a parametric additive hazards regression model for survival analysis with competing risks. For employing a parametric model we consider the modified Weibull distribution as a baseline model which is capable to model survival data with non-monotonic behaviour of hazard rate. The estimation process is carried out via maximum likelihood and Bayesian approaches. In addition to Bayesian methods, a class of non-informative types of prior is introduced with squared error (symmetric) and linear-exponential (asymmetric) loss functions. The relative performance of the different estimators is assessed using Monte Carlo simulation. Finally, using the proposed methodology, a real data analysis is performed.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.