Modeling Fragmentation within Pagosa Using Particle Methods

D. Culp, Xia Ma
{"title":"Modeling Fragmentation within Pagosa Using Particle Methods","authors":"D. Culp, Xia Ma","doi":"10.1115/hvis2019-085","DOIUrl":null,"url":null,"abstract":"\n The mechanics involved in shock physics often involves materials undergoing large deformations being subjected to high strain rates and temperature variations. When considering high-velocity impacts and explosions, metals experience plastic flow, dynamic failures and fragmentation that are often too complex for a Lagrangian method, such as the finite element method, to properly resolve. Conversely, Eulerian methods are simple to setup, but often result in numerical diffusion errors [1]. These unpleasantries can be skirted by using an alternative technique that incorporates a blend of these aforementioned methods. FLIP+MPM (FLuid Implicit Particle + Material Point Method) employs Lagrangian points to track state quantities associated with materials as strength, as well as conserved quantities, such as mass. Concurrently, an Eulerian grid is used to calculate gradient fields and incorporate an algorithm that carries out the hydrodynamics [2]. By incorporating the FLIP+MPM method into Los Alamos National Laboratory’s Pagosa hydrodynamics code, massively parallel architectures may be employed to solve such problems as those including fragmentation, plastic flow and fluid-structure interaction. This paper will begin with a mathematical description of the FLIP+MPM technique and describe how it fits into Pagosa. After a description of the implementation, the capabilities of this numerical technique are highlighted by simulating fragmentation as a result of high velocity impacts and explosions. Several strength and damage models will be exercised to demonstrate the code’s flexibility. Comparison of the different models’ fragment size distributions are given and discussed.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanics involved in shock physics often involves materials undergoing large deformations being subjected to high strain rates and temperature variations. When considering high-velocity impacts and explosions, metals experience plastic flow, dynamic failures and fragmentation that are often too complex for a Lagrangian method, such as the finite element method, to properly resolve. Conversely, Eulerian methods are simple to setup, but often result in numerical diffusion errors [1]. These unpleasantries can be skirted by using an alternative technique that incorporates a blend of these aforementioned methods. FLIP+MPM (FLuid Implicit Particle + Material Point Method) employs Lagrangian points to track state quantities associated with materials as strength, as well as conserved quantities, such as mass. Concurrently, an Eulerian grid is used to calculate gradient fields and incorporate an algorithm that carries out the hydrodynamics [2]. By incorporating the FLIP+MPM method into Los Alamos National Laboratory’s Pagosa hydrodynamics code, massively parallel architectures may be employed to solve such problems as those including fragmentation, plastic flow and fluid-structure interaction. This paper will begin with a mathematical description of the FLIP+MPM technique and describe how it fits into Pagosa. After a description of the implementation, the capabilities of this numerical technique are highlighted by simulating fragmentation as a result of high velocity impacts and explosions. Several strength and damage models will be exercised to demonstrate the code’s flexibility. Comparison of the different models’ fragment size distributions are given and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用粒子方法在Pagosa内建模碎片
冲击物理中涉及的力学通常涉及材料在高应变率和温度变化下发生大变形。当考虑高速撞击和爆炸时,金属会经历塑性流动、动态破坏和破碎,这些通常过于复杂,拉格朗日方法(如有限元方法)无法正确解决。相反,欧拉方法设置简单,但往往导致数值扩散误差[1]。这些不愉快可以通过使用另一种技术来避免,这种技术结合了上述方法的混合。FLIP+MPM(流体隐式粒子+物质点法)采用拉格朗日点来跟踪与材料相关的状态量,如强度,以及守恒量,如质量。同时,欧拉网格用于计算梯度场,并结合了一种进行流体力学的算法[2]。将FLIP+MPM方法整合到洛斯阿拉莫斯国家实验室的Pagosa流体力学代码中,可以使用大规模并行架构来解决破碎、塑性流动和流固耦合等问题。本文将从FLIP+MPM技术的数学描述开始,并描述它如何适合Pagosa。在描述了实现之后,通过模拟高速撞击和爆炸造成的碎片,突出了这种数值技术的能力。将使用几个强度和损伤模型来演示代码的灵活性。对不同模型的碎片大小分布进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1