{"title":"The interaction of a mode-1 internal solitary wave with a step and the generation of mode-2 waves","authors":"Zihua Liu, R. Grimshaw, E. Johnson","doi":"10.1080/03091929.2019.1636046","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, we examine the transformation of a mode-1 internal solitary wave incident on a bottom step, and the consequent generation of mode-2 internal solitary waves. A linear long-wave theory of mode coupling in the vicinity of the step is used to estimate the mode-1 and mode-2 wave reflection and transmission coefficients, and hence the energy fluxes. Away from the step, the wave evolution of the transmitted and reflected waves is simulated by the Korteweg–de Vries equation. Specific calculations are made using a three-layer fluid model. Three different regimes based on the layer thicknesses are examined and discussed in detail for either depression or elevation mode-1 incident waves. The common features found are that the transmitted waves (mainly mode-1) are the dominant part; most of the incident energy is transmitted and only a small part is reflected. The amplitudes of the generated mode-2 waves and the reflected mode-1 waves increase when either the upper- or middle-layer thickness increases. When the lower layer is thin enough, the amplitude of the transmitted mode-2 wave can be larger than the mode-1 waves, and the reflected energy can increase considerably which we infer may be due to a blocking effect of the step on the lower layer. The evolution away from the step is either fission into several solitary waves, or the development of a rarefaction wave followed by an undular bore, depending on the relative signs of the wave amplitudes and the nonlinear coefficient in the Korteweg–de Vries equation.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"38 1","pages":"327 - 347"},"PeriodicalIF":1.1000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1636046","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT In this study, we examine the transformation of a mode-1 internal solitary wave incident on a bottom step, and the consequent generation of mode-2 internal solitary waves. A linear long-wave theory of mode coupling in the vicinity of the step is used to estimate the mode-1 and mode-2 wave reflection and transmission coefficients, and hence the energy fluxes. Away from the step, the wave evolution of the transmitted and reflected waves is simulated by the Korteweg–de Vries equation. Specific calculations are made using a three-layer fluid model. Three different regimes based on the layer thicknesses are examined and discussed in detail for either depression or elevation mode-1 incident waves. The common features found are that the transmitted waves (mainly mode-1) are the dominant part; most of the incident energy is transmitted and only a small part is reflected. The amplitudes of the generated mode-2 waves and the reflected mode-1 waves increase when either the upper- or middle-layer thickness increases. When the lower layer is thin enough, the amplitude of the transmitted mode-2 wave can be larger than the mode-1 waves, and the reflected energy can increase considerably which we infer may be due to a blocking effect of the step on the lower layer. The evolution away from the step is either fission into several solitary waves, or the development of a rarefaction wave followed by an undular bore, depending on the relative signs of the wave amplitudes and the nonlinear coefficient in the Korteweg–de Vries equation.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.