Magnetically separable Fe3O4-supported Ru–Ni bimetallic catalysts for diformyltricyclodecanes hydrogenation to value-added fine chemicals

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Progress in Reaction Kinetics and Mechanism Pub Date : 2020-01-01 DOI:10.1177/1468678319825732
Hongyi Li, Yubo Ma
{"title":"Magnetically separable Fe3O4-supported Ru–Ni bimetallic catalysts for diformyltricyclodecanes hydrogenation to value-added fine chemicals","authors":"Hongyi Li, Yubo Ma","doi":"10.1177/1468678319825732","DOIUrl":null,"url":null,"abstract":"A series of magnetically separable catalysts based on Ru–Ni bimetallic compounds supported on Fe3O4 nanoparticles was prepared by the co-precipitation method. These catalysts were evaluated for diformyltricyclodecanes hydrogenation reactions, achieving 97% tricyclodecanedimethylol selectivity at 98% diformyltricyclodecanes conversion under mild conditions. The catalyst could be easily recovered by using the magnetic property of the iron oxide support. The catalysts were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, and temperature-programmed reduction. These complementary characterization results suggested that the superior catalytic activity may be derived from the delicate synergy between Ru and Ni species.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825732","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A series of magnetically separable catalysts based on Ru–Ni bimetallic compounds supported on Fe3O4 nanoparticles was prepared by the co-precipitation method. These catalysts were evaluated for diformyltricyclodecanes hydrogenation reactions, achieving 97% tricyclodecanedimethylol selectivity at 98% diformyltricyclodecanes conversion under mild conditions. The catalyst could be easily recovered by using the magnetic property of the iron oxide support. The catalysts were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, and temperature-programmed reduction. These complementary characterization results suggested that the superior catalytic activity may be derived from the delicate synergy between Ru and Ni species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性可分离fe3o4负载Ru-Ni双金属催化剂用于二甲酰三环癸烷加氢制备高附加值精细化学品
采用共沉淀法制备了一系列以Fe3O4纳米颗粒为载体的Ru-Ni双金属化合物磁性可分离催化剂。对这些催化剂进行了二甲酰基三环癸烷加氢反应的评价,在温和条件下,二甲酰基三环癸烷的转化率为98%,三环癸烷的选择性为97%。利用氧化铁载体的磁性可以很容易地回收催化剂。用x射线光电子能谱、x射线衍射和程序升温还原对催化剂进行了表征。这些互补的表征结果表明,优越的催化活性可能源于Ru和Ni之间的微妙协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
期刊最新文献
Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control Entropy controlled reaction of piperidine with isatin derivatives in 80% aqueous methanol Kinetics and mechanism of the oxidation of furfural by benzimidazolium dichromate under non aqueous medium Melting aspects in flow of second grade nanomaterial with homogeneous–heterogeneous reactions and irreversibility phenomenon: A residual error analysis Two coordination polymers: Crystal structures, prevention and nursing values on postoperative infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1