Improved BP Arithmetic in Moisture Content Measurement with Microwave Resonant

Z. Liu
{"title":"Improved BP Arithmetic in Moisture Content Measurement with Microwave Resonant","authors":"Z. Liu","doi":"10.1109/ICCSNT50940.2020.9304987","DOIUrl":null,"url":null,"abstract":"Traditional linear regression is the primary factor that affects measurement precision in measuring moisture content with microwave resonator. A regression is put forward based on an improved BP algorithm to modify the measurement result. First, the regression neural network is pre optimized by using the macro search ability, parallel operation and strong robustness of genetic algorithm. Then, integrating the gradient descent method of BP algorithm, the presented algorithm can effectively avoid the traditional BP algorithm of falling into local minimum, at the same time, high prediction accuracy and fast convergence speed are maintained. It has the characteristics of global superiority and accuracy for optimization, thus improving the measurement accuracy. The experimental results show that the mean square error between predicted moisture and actual moisture is 0.0109, the average absolute error is 0.0702, the average relative error is 0.1161, and the determination coefficient is 0.9989.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"80 1","pages":"190-193"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9304987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional linear regression is the primary factor that affects measurement precision in measuring moisture content with microwave resonator. A regression is put forward based on an improved BP algorithm to modify the measurement result. First, the regression neural network is pre optimized by using the macro search ability, parallel operation and strong robustness of genetic algorithm. Then, integrating the gradient descent method of BP algorithm, the presented algorithm can effectively avoid the traditional BP algorithm of falling into local minimum, at the same time, high prediction accuracy and fast convergence speed are maintained. It has the characteristics of global superiority and accuracy for optimization, thus improving the measurement accuracy. The experimental results show that the mean square error between predicted moisture and actual moisture is 0.0109, the average absolute error is 0.0702, the average relative error is 0.1161, and the determination coefficient is 0.9989.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波共振测湿中的改进BP算法
在微波谐振器测量水分含量时,传统的线性回归是影响测量精度的主要因素。提出了一种基于改进BP算法的回归方法来修正测量结果。首先,利用遗传算法的宏搜索能力、并行运算能力和较强的鲁棒性对回归神经网络进行预优化;然后,结合BP算法的梯度下降法,有效避免了传统BP算法陷入局部极小的问题,同时保持了较高的预测精度和较快的收敛速度。它具有全局优势和精度优化的特点,从而提高了测量精度。实验结果表明,预测湿度与实际湿度的均方根误差为0.0109,平均绝对误差为0.0702,平均相对误差为0.1161,决定系数为0.9989。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Optimal Rescheduling Mode of Flexible Job Shop Under the Arrival of a New Job Object Detection on Aerial Image by Using High-Resolutuion Network An Improved Ant Colony Algorithm is Proposed to Solve the Single Objective Flexible Job-shop Scheduling Problem RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements Grounding Pile Detection System based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1