Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots

Vivek Pandey , Abhishek Chauhan , Gajanan Pandey , Mohana Krishna Reddy Mudiam
{"title":"Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots","authors":"Vivek Pandey ,&nbsp;Abhishek Chauhan ,&nbsp;Gajanan Pandey ,&nbsp;Mohana Krishna Reddy Mudiam","doi":"10.1016/j.ancr.2015.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The present communication deals with the synthesis of luminescent Mn-doped ZnS quantum dots (QDs) anchored to surface imprinted polymer for the optical sensing of 3-phenoxy benzoic acid (3-PBA) in urine samples. The combination of sensing and surface functionalization not only improves the selectivity of the method, but also increases the optosensing ability of the material for non-phosphorescent substances. The developed material was utilized for the selective and sensitive detection of 3-PBA in urine samples. The proposed method shows good linearity with a regression coefficient (<em>R</em><sup>2</sup>) of 0.98. The limit of detection was found to be 0.117<!--> <!-->μM. The method has an acceptable precision and accuracy which are found to be less than 8% and 80–90% respectively at three different concentrations. The quenching constant of quantum dot-molecular imprinted polymer was found to be 3.4 times higher to that of the quantum dot-non imprinted polymer (QD-NIP) as calculated by Stern–Volmer equation. The sensing method developed has shown immense utility to detect 3-PBA in complex biological samples like urine.</p></div>","PeriodicalId":7819,"journal":{"name":"Analytical Chemistry Research","volume":"5 ","pages":"Pages 21-27"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ancr.2015.06.002","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214181215000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The present communication deals with the synthesis of luminescent Mn-doped ZnS quantum dots (QDs) anchored to surface imprinted polymer for the optical sensing of 3-phenoxy benzoic acid (3-PBA) in urine samples. The combination of sensing and surface functionalization not only improves the selectivity of the method, but also increases the optosensing ability of the material for non-phosphorescent substances. The developed material was utilized for the selective and sensitive detection of 3-PBA in urine samples. The proposed method shows good linearity with a regression coefficient (R2) of 0.98. The limit of detection was found to be 0.117 μM. The method has an acceptable precision and accuracy which are found to be less than 8% and 80–90% respectively at three different concentrations. The quenching constant of quantum dot-molecular imprinted polymer was found to be 3.4 times higher to that of the quantum dot-non imprinted polymer (QD-NIP) as calculated by Stern–Volmer equation. The sensing method developed has shown immense utility to detect 3-PBA in complex biological samples like urine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锰掺杂硫化锌量子点表面印迹聚合物对3-苯氧苯甲酸作为拟除虫菊酯农药暴露标记物的光学传感
本文研究了锚定在表面印迹聚合物上的发光mn掺杂ZnS量子点(QDs)的合成,用于尿液样品中3-苯氧苯甲酸(3-PBA)的光学传感。传感和表面功能化的结合不仅提高了方法的选择性,而且增加了材料对非磷光物质的光传感能力。该材料可用于尿液样品中3-PBA的选择性和敏感性检测。该方法线性良好,回归系数(R2)为0.98。检测限为0.117 μM。该方法精密度和准确度均可接受,在三种不同浓度下精密度和准确度分别小于8%和80-90%。根据Stern-Volmer方程计算,量子点-分子印迹聚合物的猝灭常数比量子点-非印迹聚合物(QD-NIP)高3.4倍。所开发的传感方法在检测尿液等复杂生物样品中的3-PBA方面显示出巨大的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemically modified carbon paste ion-selective electrodes for determination of atorvastatin calcium in pharmaceutical preparations Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane Structural identification and estimation of Rosuvastatin calcium related impurities in Rosuvastatin calcium tablet dosage form Comparative sensing of aldehyde and ammonia vapours on synthetic polypyrrole-Sn(IV)arsenotungstate nanocomposite cation exchange material Nano clay Ni/NiO nanocomposite new sorbent for separation and preconcentration dibenzothiophene from crude prior to UV–vis spectrophotometery determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1