{"title":"Reinforcement learning based flight controller capable of controlling a quadcopter with four, three and two working motors","authors":"Amir Ramezani Dooraki, D. Lee","doi":"10.23919/ICCAS50221.2020.9268270","DOIUrl":null,"url":null,"abstract":"In this research, we show how a reinforcement learning based algorithm called Fault-Tolerant Bio-inspired Flight Controller (FT-BFC) is capable of training a single neural network based model to fly a quadcopter with two, three, and four working rotors. Our algorithm can learn a low-level flight controller that directly controls angular velocities of motors to fly a quadcopter when it has four fully functional motors, and also, despite having one or two motor failures (That is, our proposed flight controller is a fault-tolerant controller as well). In the training and running of our controller, we do not use any conventional flight controller, such as a PID or SMC controller. We test our algorithm in a simulation environment, Gazebo simulator, and illustrate our simulation results that backing up our algorithm capabilities. Finally, before concluding our paper, we discuss the implementation of our algorithm in a real quadcopter.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"71 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this research, we show how a reinforcement learning based algorithm called Fault-Tolerant Bio-inspired Flight Controller (FT-BFC) is capable of training a single neural network based model to fly a quadcopter with two, three, and four working rotors. Our algorithm can learn a low-level flight controller that directly controls angular velocities of motors to fly a quadcopter when it has four fully functional motors, and also, despite having one or two motor failures (That is, our proposed flight controller is a fault-tolerant controller as well). In the training and running of our controller, we do not use any conventional flight controller, such as a PID or SMC controller. We test our algorithm in a simulation environment, Gazebo simulator, and illustrate our simulation results that backing up our algorithm capabilities. Finally, before concluding our paper, we discuss the implementation of our algorithm in a real quadcopter.