Suppression of vascular endothelial growth factor expression in breast cancer cells by microRNA-125b-mediated attenuation of serum amyloid A activating factor-1 level
{"title":"Suppression of vascular endothelial growth factor expression in breast cancer cells by microRNA-125b-mediated attenuation of serum amyloid A activating factor-1 level","authors":"A. Ray, B. Ray","doi":"10.18632/oncoscience.483","DOIUrl":null,"url":null,"abstract":"Increased level of an inflammation-responsive transcription factor called serum amyloid A-activating factor (SAF-1) has been linked to the pathogenesis in human breast cancer. SAF-1 is found to promote vascular endothelial growth factor (VEGF) expression in breast carcinoma cells and boost angiogenesis. In an effort to develop a cellular mechanism to control VEGF expression, we sought to limit SAF-1 activity in breast cancer cells. We report here several targets within the SAF-1 mRNA for binding of microRNA-125b (miR-125b) and we show that VEGF expression is reduced in breast cancer cells when SAF-1 level is reduced with the microRNA action. Within the 3' un-translated region (UTR) of SAF-1 transcript, we have identified four highly conserved miR-125b responsive elements. We show that these miR-125b binding sites mediate repression of SAF-1 by miR-125b. Ectopic expression of miR-125b in nonmetastatic and metastatic breast cancer cells repressed SAF-1-mediated activity on VEGF promoter function and inhibited cancer cell migration and invasion potentials in vitro. Together, these results suggest that termination of SAF-1 function by miR-125b could be developed as a potential anti-VEGF and anti-angiogenic agent, which has high clinical relevance.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"399 1","pages":"337 - 348"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Increased level of an inflammation-responsive transcription factor called serum amyloid A-activating factor (SAF-1) has been linked to the pathogenesis in human breast cancer. SAF-1 is found to promote vascular endothelial growth factor (VEGF) expression in breast carcinoma cells and boost angiogenesis. In an effort to develop a cellular mechanism to control VEGF expression, we sought to limit SAF-1 activity in breast cancer cells. We report here several targets within the SAF-1 mRNA for binding of microRNA-125b (miR-125b) and we show that VEGF expression is reduced in breast cancer cells when SAF-1 level is reduced with the microRNA action. Within the 3' un-translated region (UTR) of SAF-1 transcript, we have identified four highly conserved miR-125b responsive elements. We show that these miR-125b binding sites mediate repression of SAF-1 by miR-125b. Ectopic expression of miR-125b in nonmetastatic and metastatic breast cancer cells repressed SAF-1-mediated activity on VEGF promoter function and inhibited cancer cell migration and invasion potentials in vitro. Together, these results suggest that termination of SAF-1 function by miR-125b could be developed as a potential anti-VEGF and anti-angiogenic agent, which has high clinical relevance.