Identification of Soil Mechanical Parameters by Inverse Analysis Using Stochastic Methods

Moussaoui Moufida, Rehab Bekkouche Souhila, Kamouche Houda, Benayoun Fadila, Goudjil Kamel
{"title":"Identification of Soil Mechanical Parameters by Inverse Analysis Using Stochastic Methods","authors":"Moussaoui Moufida, Rehab Bekkouche Souhila, Kamouche Houda, Benayoun Fadila, Goudjil Kamel","doi":"10.2478/sspjce-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract The mechanical parameters of the soil that must be introduced into geotechnical calculations, in particular those carried out by the Finite Element Method, are often poorly understood. The search for the numerical values of these parameters so that the models best reflect the observed reality constitutes the inverse analysis approach. In this article, we are interested in the identification of the mechanical parameters of the soil based on the principle of inverse analysis using the two methods of stochastic optimization, the genetic algorithm and the hybrid genetic algorithm with Tabu search. Soil behavior is represented by the constitutive soil Mohr-Coulomb model. The identification relates to the following two parameters: The shear modulus (G) and the friction angle (φ). The validation of these two stochastic optimization methods is done on the experimental sheet pile wall of Hochstetten in Germany. The results obtained by applying the genetic algorithm method and the hybrid genetic algorithm method for the identification of the two Mohr-Coulomb parameters (G, φ) show that the hybridization process of the genetic algorithm combined with the Tabu search method accelerated the convergence of the algorithm to the exact solution of the problem whereas the genetic algorithm alone takes a much longer computation time to reach the exact solution of the problem.","PeriodicalId":30755,"journal":{"name":"Selected Scientific Papers Journal of Civil Engineering","volume":"314 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selected Scientific Papers Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sspjce-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The mechanical parameters of the soil that must be introduced into geotechnical calculations, in particular those carried out by the Finite Element Method, are often poorly understood. The search for the numerical values of these parameters so that the models best reflect the observed reality constitutes the inverse analysis approach. In this article, we are interested in the identification of the mechanical parameters of the soil based on the principle of inverse analysis using the two methods of stochastic optimization, the genetic algorithm and the hybrid genetic algorithm with Tabu search. Soil behavior is represented by the constitutive soil Mohr-Coulomb model. The identification relates to the following two parameters: The shear modulus (G) and the friction angle (φ). The validation of these two stochastic optimization methods is done on the experimental sheet pile wall of Hochstetten in Germany. The results obtained by applying the genetic algorithm method and the hybrid genetic algorithm method for the identification of the two Mohr-Coulomb parameters (G, φ) show that the hybridization process of the genetic algorithm combined with the Tabu search method accelerated the convergence of the algorithm to the exact solution of the problem whereas the genetic algorithm alone takes a much longer computation time to reach the exact solution of the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机逆分析方法的土壤力学参数识别
土的力学参数必须引入岩土工程计算,特别是那些由有限元法进行的计算,往往是知之甚少。寻找这些参数的数值,使模型最能反映观测到的实际情况,这就是逆分析方法。在本文中,我们感兴趣的是基于逆分析原理的土壤力学参数的识别,利用遗传算法和禁忌搜索混合遗传算法两种随机优化方法。土的特性用本构土莫尔-库仑模型表示。识别涉及以下两个参数:剪切模量(G)和摩擦角(φ)。在德国Hochstetten试验板桩墙上对这两种随机优化方法进行了验证。应用遗传算法方法和混合遗传算法方法辨识两个Mohr-Coulomb参数(G, φ)的结果表明,遗传算法结合禁忌搜索方法的杂交过程加快了算法收敛到问题精确解的速度,而单独使用遗传算法需要更长的计算时间才能达到问题的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
27 weeks
期刊最新文献
Fly Ash PLTU Sumber Alam Sekurau Kalimantan Utara sebagai Binder Beton Geopolimer Analisis Kinerja Ruas Jalan Terhadap U-Turn di Kota Pekanbaru PASIR LAUT KOTA TARAKAN SEBAGAI BAHAN STABILISASI TANAH LUNAK EVALUASI KINERJA TERMINAL PENUMPANG ANGKUTAN LAUT DI PELABUHAN TENGKAYU I KOTA TARAKAN KOMPARASI BAJA KONVENSIONAL DAN BAJA KOMPOSIT SANDWICH PANEL SEBAGAI MATERIAL PELAT LANTAI JEMBATAN PENYEBERANGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1