MIMO radar target tracking using the probability hypothesis density filter

J. D. Glass, A. Lanterman
{"title":"MIMO radar target tracking using the probability hypothesis density filter","authors":"J. D. Glass, A. Lanterman","doi":"10.1109/AERO.2012.6187208","DOIUrl":null,"url":null,"abstract":"Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率假设密度滤波的MIMO雷达目标跟踪
在广泛应用的多输入多输出(MIMO)雷达系统中,目标跟踪需要对多个传感器的多个测量数据进行联合处理。概率假设密度(PHD)过滤器提供了一个很有前途的框架来处理这些测量,因为它不需要任何测量到跟踪的关联。此外,由于缺乏显式的数据关联,PHD过滤器自然地处理多目标环境。我们在GTRI/ONR MIMO基准中实现了一个PHD滤波器,并将结果与基准的默认解决方案进行了比较。我们假设一个线性高斯目标模型,因此后验目标强度在任何时间步长都是高斯混合(GM)。在此假设下,PHD滤波器具有闭型递归,简化了目标状态提取。本文重点介绍了我们在MIMO基准测试中实现GM-PHD滤波器,以及实际问题,如轨道标记和在多传感器情况下应用滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost telepresence at technical conferences Design of a Stellar Gyroscope for visual attitude propagation for small satellites A cooperative search algorithm for highly parallel implementation of RANSAC for model estimation on Tilera MIMD architecture Open source software framework for applications in aeronautics and space Robonaut 2 — Initial activities on-board the ISS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1