Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2022-03-17 DOI:10.1145/3501262
Yifu Li, Lening Wang, Dongyoon Lee, R. Jin
{"title":"Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart","authors":"Yifu Li, Lening Wang, Dongyoon Lee, R. Jin","doi":"10.1145/3501262","DOIUrl":null,"url":null,"abstract":"Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过定性和定量(QQ)控制图监控雾制造的运行时间指标
雾制造在制造网络中结合了雾和云计算,提供高效的数据分析并支持实时决策。检测异常,包括不平衡的计算工作负载和网络攻击,对于确保可靠和响应的计算服务至关重要。然而,这种异常通常与动态卸载事件同时发生,其中计算任务从占用率较高的Fog节点迁移到占用率较低的Fog节点,以减少总体计算时间延迟并提高吞吐量。这种并发性共同影响系统行为,导致异常检测不准确。我们提出了一个定性和定量(QQ)控制图,通过识别在动态卸载(定性变量)存在下被监控的运行时度量关系(定量变量)的变化,使用风险调整监测框架来监测系统异常。仿真和制造雾的实例研究表明,在动态卸载影响下,与现有文献相比,所提出的方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
FLAShadow: A Flash-based Shadow Stack for Low-end Embedded Systems CoSense: Deep Learning Augmented Sensing for Coexistence with Networking in Millimeter-Wave Picocells CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against Multi-step Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1