Online Depth Learning Against Forgetting in Monocular Videos

Zhenyu Zhang, Stéphane Lathuilière, E. Ricci, N. Sebe, Yan Yan, Jian Yang
{"title":"Online Depth Learning Against Forgetting in Monocular Videos","authors":"Zhenyu Zhang, Stéphane Lathuilière, E. Ricci, N. Sebe, Yan Yan, Jian Yang","doi":"10.1109/cvpr42600.2020.00455","DOIUrl":null,"url":null,"abstract":"Online depth learning is the problem of consistently adapting a depth estimation model to handle a continuously changing environment. This problem is challenging due to the network easily overfits on the current environment and forgets its past experiences. To address such problem, this paper presents a novel Learning to Prevent Forgetting (LPF) method for online mono-depth adaptation to new target domains in unsupervised manner. Instead of updating the universal parameters, LPF learns adapter modules to efficiently adjust the feature representation and distribution without losing the pre-learned knowledge in online condition. Specifically, to adapt temporal-continuous depth patterns in videos, we introduce a novel meta-learning approach to learn adapter modules by combining online adaptation process into the learning objective. To further avoid overfitting, we propose a novel temporal-consistent regularization to harmonize the gradient descent procedure at each online learning step. Extensive evaluations on real-world datasets demonstrate that the proposed method, with very limited parameters, significantly improves the estimation quality.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"20 1","pages":"4493-4502"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Online depth learning is the problem of consistently adapting a depth estimation model to handle a continuously changing environment. This problem is challenging due to the network easily overfits on the current environment and forgets its past experiences. To address such problem, this paper presents a novel Learning to Prevent Forgetting (LPF) method for online mono-depth adaptation to new target domains in unsupervised manner. Instead of updating the universal parameters, LPF learns adapter modules to efficiently adjust the feature representation and distribution without losing the pre-learned knowledge in online condition. Specifically, to adapt temporal-continuous depth patterns in videos, we introduce a novel meta-learning approach to learn adapter modules by combining online adaptation process into the learning objective. To further avoid overfitting, we propose a novel temporal-consistent regularization to harmonize the gradient descent procedure at each online learning step. Extensive evaluations on real-world datasets demonstrate that the proposed method, with very limited parameters, significantly improves the estimation quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单目视频中的在线深度学习对抗遗忘
在线深度学习是一个不断调整深度估计模型来处理不断变化的环境的问题。这个问题很有挑战性,因为网络很容易对当前环境过拟合而忘记过去的经验。为了解决这一问题,本文提出了一种新的学习防止遗忘(LPF)方法,用于以无监督方式在线单深度适应新的目标域。LPF不需要更新通用参数,而是通过学习适配模块来有效地调整特征表示和分布,而不会丢失在线状态下预先学习的知识。具体来说,为了适应视频中的时间连续深度模式,我们引入了一种新的元学习方法,通过将在线适应过程结合到学习目标中来学习适配器模块。为了进一步避免过拟合,我们提出了一种新的时间一致正则化来协调每个在线学习步骤的梯度下降过程。对真实数据集的广泛评估表明,该方法在参数非常有限的情况下显著提高了估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1