{"title":"The Benefits of Side Information for Structured Phase Retrieval","authors":"M. Salman Asif, C. Hegde","doi":"10.23919/Eusipco47968.2020.9287536","DOIUrl":null,"url":null,"abstract":"Phase retrieval, or signal recovery from magnitude-only measurements, is a challenging signal processing problem. Recent progress has revealed that measurement- and computational-complexity challenges can be alleviated if the underlying signal belongs to certain low-dimensional model families, including sparsity, low-rank, or neural generative models. However, the remaining bottleneck in most of these approaches is the requirement of a carefully chosen initial signal estimate. In this paper, we assume that a portion of the signal is already known a priori as \"side information\" (this assumption is natural in applications such as holographic coherent diffraction imaging). When such side information is available, we show that a much simpler initialization can provably succeed with considerably reduced costs. We supplement our theory with a range of simulation results.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"127 1","pages":"775-778"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Phase retrieval, or signal recovery from magnitude-only measurements, is a challenging signal processing problem. Recent progress has revealed that measurement- and computational-complexity challenges can be alleviated if the underlying signal belongs to certain low-dimensional model families, including sparsity, low-rank, or neural generative models. However, the remaining bottleneck in most of these approaches is the requirement of a carefully chosen initial signal estimate. In this paper, we assume that a portion of the signal is already known a priori as "side information" (this assumption is natural in applications such as holographic coherent diffraction imaging). When such side information is available, we show that a much simpler initialization can provably succeed with considerably reduced costs. We supplement our theory with a range of simulation results.