Dynamic Composition for Conversational Domain Exploration

Idan Szpektor, Deborah Cohen, G. Elidan, Michael Fink, A. Hassidim, Orgad Keller, Sayalı, Kulkarni, E. Ofek, S. Pudinsky, Asaf Revach, Shimi Salant
{"title":"Dynamic Composition for Conversational Domain Exploration","authors":"Idan Szpektor, Deborah Cohen, G. Elidan, Michael Fink, A. Hassidim, Orgad Keller, Sayalı, Kulkarni, E. Ofek, S. Pudinsky, Asaf Revach, Shimi Salant","doi":"10.1145/3366423.3380167","DOIUrl":null,"url":null,"abstract":"We study conversational domain exploration (CODEX), where the user’s goal is to enrich her knowledge of a given domain by conversing with an informative bot. Such conversations should be well grounded in high-quality domain knowledge as well as engaging and open-ended. A CODEX bot should be proactive and introduce relevant information even if not directly asked for by the user. The bot should also appropriately pivot the conversation to undiscovered regions of the domain. To address these dialogue characteristics, we introduce a novel approach termed dynamic composition that decouples candidate content generation from the flexible composition of bot responses. This allows the bot to control the source, correctness and quality of the offered content, while achieving flexibility via a dialogue manager that selects the most appropriate contents in a compositional manner. We implemented a CODEX bot based on dynamic composition and integrated it into the Google Assistant . As an example domain, the bot conversed about the NBA basketball league in a seamless experience, such that users were not aware whether they were conversing with the vanilla system or the one augmented with our CODEX bot. Results are positive and offer insights into what makes for a good conversation. To the best of our knowledge, this is the first real user experiment of open-ended dialogues as part of a commercial assistant system.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study conversational domain exploration (CODEX), where the user’s goal is to enrich her knowledge of a given domain by conversing with an informative bot. Such conversations should be well grounded in high-quality domain knowledge as well as engaging and open-ended. A CODEX bot should be proactive and introduce relevant information even if not directly asked for by the user. The bot should also appropriately pivot the conversation to undiscovered regions of the domain. To address these dialogue characteristics, we introduce a novel approach termed dynamic composition that decouples candidate content generation from the flexible composition of bot responses. This allows the bot to control the source, correctness and quality of the offered content, while achieving flexibility via a dialogue manager that selects the most appropriate contents in a compositional manner. We implemented a CODEX bot based on dynamic composition and integrated it into the Google Assistant . As an example domain, the bot conversed about the NBA basketball league in a seamless experience, such that users were not aware whether they were conversing with the vanilla system or the one augmented with our CODEX bot. Results are positive and offer insights into what makes for a good conversation. To the best of our knowledge, this is the first real user experiment of open-ended dialogues as part of a commercial assistant system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
会话领域探索的动态组合
我们研究会话领域探索(CODEX),其中用户的目标是通过与信息型机器人交谈来丰富她对给定领域的知识。这样的对话应该以高质量的领域知识为基础,并且具有吸引力和开放性。食品法典机器人应积极主动,即使用户没有直接要求,也应介绍相关信息。机器人还应该适当地将对话转向域的未被发现的区域。为了解决这些对话特征,我们引入了一种称为动态组合的新方法,该方法将候选内容生成与机器人响应的灵活组合解耦。这允许机器人控制所提供内容的来源、正确性和质量,同时通过对话管理器实现灵活性,以组合的方式选择最合适的内容。我们实现了一个基于动态合成的CODEX机器人,并将其集成到Google Assistant中。作为一个示例域,机器人在无缝体验中谈论NBA篮球联赛,这样用户就不知道他们是在与香草系统交谈还是与我们的CODEX机器人增强的系统交谈。结果是积极的,并提供了如何进行良好对话的见解。据我们所知,这是作为商业辅助系统一部分的开放式对话的第一个真正的用户实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1