The ambiguous sea level rise at Brest’s 212 yearlong record elucidated

IF 0.9 Q4 REMOTE SENSING Journal of Geodetic Science Pub Date : 2021-01-01 DOI:10.1515/jogs-2020-0124
H. Iz, C. Shum
{"title":"The ambiguous sea level rise at Brest’s 212 yearlong record elucidated","authors":"H. Iz, C. Shum","doi":"10.1515/jogs-2020-0124","DOIUrl":null,"url":null,"abstract":"Abstract The tide gauge record at Brest, France, along Eastern part of Atlantic coast is one of the longest records in Europe spanning 212 years (1807–2019). Analyzing these records has important ramifications in assessing anthropogenic impact of climate change at local and regional scales during this period. All the previous studies that analyzed Brest’s tide gauge record have used vaguely defined quadratics models and did not incorporate the effect of sea level variations at various frequencies, which confounded the presence or absence of a plausible uniform acceleration. Here, we entertained two competing kinematic models; one with a uniform acceleration representing 212 years of monthly averaged tide gauge data, the other is a two-phase trend model (Phase I is 93 years long and Phase II is 119 years long). Both models include statistically significant (α = 0.05) common periodic effects, and sub and super harmonics of luni-solar origin for representing monthly averaged sea level anomalies observed at Brest. The least squares statistics for both models’ solutions cannot distinguish one model over the other, like earlier studies. However, the assessment of Phase I segment of the records disclosed the absence of a statistically significant trend and a uniform acceleration during this period. This outcome eliminates conclusively the occurrence of a uniform acceleration during the entire 212-year data span of the tide gauge record at Brest, favoring the two-phase trend model as a sound alternative.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The tide gauge record at Brest, France, along Eastern part of Atlantic coast is one of the longest records in Europe spanning 212 years (1807–2019). Analyzing these records has important ramifications in assessing anthropogenic impact of climate change at local and regional scales during this period. All the previous studies that analyzed Brest’s tide gauge record have used vaguely defined quadratics models and did not incorporate the effect of sea level variations at various frequencies, which confounded the presence or absence of a plausible uniform acceleration. Here, we entertained two competing kinematic models; one with a uniform acceleration representing 212 years of monthly averaged tide gauge data, the other is a two-phase trend model (Phase I is 93 years long and Phase II is 119 years long). Both models include statistically significant (α = 0.05) common periodic effects, and sub and super harmonics of luni-solar origin for representing monthly averaged sea level anomalies observed at Brest. The least squares statistics for both models’ solutions cannot distinguish one model over the other, like earlier studies. However, the assessment of Phase I segment of the records disclosed the absence of a statistically significant trend and a uniform acceleration during this period. This outcome eliminates conclusively the occurrence of a uniform acceleration during the entire 212-year data span of the tide gauge record at Brest, favoring the two-phase trend model as a sound alternative.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布雷斯特长达212年的海平面上升记录得到了阐明
法国布雷斯特大西洋东部海岸的潮汐仪记录是欧洲最长的记录之一,记录时间长达212年(1807-2019)。分析这些记录对于评估这一时期局地和区域尺度上气候变化的人为影响具有重要意义。之前所有分析布列斯特潮汐计记录的研究都使用了定义模糊的二次模型,并且没有考虑不同频率的海平面变化的影响,这混淆了是否存在似是而非的均匀加速度。在这里,我们考虑了两个相互竞争的运动学模型;一个是均匀加速模式,代表212年的月平均验潮器资料;另一个是两阶段趋势模式(第一阶段为93年,第二阶段为119年)。两种模式均包含统计上显著(α = 0.05)的共同周期效应,以及太阳-太阳起源的次谐波和超谐波,用于表示布列斯特观测到的月平均海平面异常。两个模型的解的最小二乘统计不能区分一个模型和另一个模型,就像以前的研究一样。然而,对第一阶段部分记录的评估显示,在此期间没有统计上显著的趋势和均匀加速。这一结果最终排除了在布列斯特整个212年的验潮仪记录数据中出现均匀加速的可能性,支持两阶段趋势模型作为一个可靠的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
期刊最新文献
Displacement analysis of the October 30, 2020 (M w = 6.9), Samos (Aegean Sea) earthquake A field test of compact active transponders for InSAR geodesy Estimating the slip rate in the North Tabriz Fault using focal mechanism data and GPS velocity field Simulating VLBI observations to BeiDou and Galileo satellites in L-band for frame ties On initial data in adjustments of the geometric levelling networks (on the mean of paired observations)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1