Jun Liang Lin, Z. Wang, Xiang-Hong Zhao, Z. D. Zhang
{"title":"Significantly Enhanced Ferroelectric and Dielectric Properties in BaTiO 3/LaNiO 3 Superlattices","authors":"Jun Liang Lin, Z. Wang, Xiang-Hong Zhao, Z. D. Zhang","doi":"10.2139/ssrn.3435684","DOIUrl":null,"url":null,"abstract":"BaTiO<sub>3</sub>/LaNiO<sub>3</sub> (BTO/LNO) ferroelectric superlattices with different stacking periods have been prepared by pulsed laser deposition (PLD). Compared to the pure BTO films, the BTO/LNO superlattices have significantly enhanced ferroelectric and dielectric properties. This is because, in addition to the strain effect, the accumulated oxygen vacancies in each ultra-thin LNO layer can change the depolarization field and reduce the leakage current in the superlattices. Therefore, these results indicate that the use of ultra-thin metallic oxide layers as the constituent material of the ferroelectric superlattices is a feasible and effective way to improve the properties of superlattices.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3435684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BaTiO3/LaNiO3 (BTO/LNO) ferroelectric superlattices with different stacking periods have been prepared by pulsed laser deposition (PLD). Compared to the pure BTO films, the BTO/LNO superlattices have significantly enhanced ferroelectric and dielectric properties. This is because, in addition to the strain effect, the accumulated oxygen vacancies in each ultra-thin LNO layer can change the depolarization field and reduce the leakage current in the superlattices. Therefore, these results indicate that the use of ultra-thin metallic oxide layers as the constituent material of the ferroelectric superlattices is a feasible and effective way to improve the properties of superlattices.