Significant multiple high-and low-risk regions in event data maps

Emerson C. Bodevan, L. Duczmal, Gladston J. P. Moreira, A. Duarte, F. C. O. Magalhães
{"title":"Significant multiple high-and low-risk regions in event data maps","authors":"Emerson C. Bodevan, L. Duczmal, Gladston J. P. Moreira, A. Duarte, F. C. O. Magalhães","doi":"10.3402/EHTJ.V4I0.11131","DOIUrl":null,"url":null,"abstract":"Introduction The Voronoi Based Scan (VBScan) (1) is a fast method for the detection and inference of point data set space-time disease clusters. A Voronoi diagram is built for points representing population individuals (cases and controls). The number of Voronoi cells boundaries intercepted by the line segment joining two cases’ points defines the Voronoi distance between those points. That distance is used to approximate the density of the heterogeneous population and build the Voronoi distance Minimum Spanning Tree (MST) linking the cases. The successive removal of its edges generates subtrees, which are the potential space-time clusters, which are evaluated through the scan statistic. Monte Carlo replications of the original data are used to evaluate cluster significance. In the present work, we modify VBScan to find the best partition dividing the map into multiple lowand high-risk regions.","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction The Voronoi Based Scan (VBScan) (1) is a fast method for the detection and inference of point data set space-time disease clusters. A Voronoi diagram is built for points representing population individuals (cases and controls). The number of Voronoi cells boundaries intercepted by the line segment joining two cases’ points defines the Voronoi distance between those points. That distance is used to approximate the density of the heterogeneous population and build the Voronoi distance Minimum Spanning Tree (MST) linking the cases. The successive removal of its edges generates subtrees, which are the potential space-time clusters, which are evaluated through the scan statistic. Monte Carlo replications of the original data are used to evaluate cluster significance. In the present work, we modify VBScan to find the best partition dividing the map into multiple lowand high-risk regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
事件数据图中多个重要的高风险和低风险区域
基于Voronoi的扫描(VBScan)(1)是一种快速检测和推断点数据集时空疾病聚类的方法。为代表群体个体(病例和对照)的点建立了Voronoi图。连接两个案例点的线段截取的Voronoi细胞边界的数量定义了这些点之间的Voronoi距离。该距离用于估计异质种群的密度,并建立连接案例的Voronoi距离最小生成树(MST)。连续去除其边缘产生子树,这些子树是潜在的时空簇,通过扫描统计量对其进行评估。原始数据的蒙特卡罗复制用于评估聚类显著性。在本工作中,我们修改了VBScan,以找到将地图划分为多个低高风险区域的最佳分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Natural World Individuals and Society Hospital preparedness in community measles outbreaks-challenges and recommendations for low-resource settings. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1