Constrained Optimization Using Triple Spaces Cultured Genetic Algorithm

Wanwan Tang, Yanda Li
{"title":"Constrained Optimization Using Triple Spaces Cultured Genetic Algorithm","authors":"Wanwan Tang, Yanda Li","doi":"10.1109/ICNC.2008.336","DOIUrl":null,"url":null,"abstract":"Cultural algorithms provide a useful framework to make evolutionary algorithms more efficient. However, there is still much for revision especially when they are applied in the constrained optimizations, where a mass of memory and computation cost is currently unavoidable. We propose a novel triple spaces cultural algorithm in which a new framework called anti-culture population consisting of individuals disobeying the guidance of culture is added to the traditional dual inheritance cultural algorithm. The effect that the individuals in the anti-culture population disobey culture's guidance is ensured by some mutation operations which make the individuals away from the Culture guided individual in a radiating way. The anti-culture population makes the evolution of both culture and the population faster and at the same time take a lower risk of the local optimization problem. Moreover, with the triple spaces structure and some novel rules to control the convergence process of the algorithm through awarding the most successful individuals and punishing the unsuccessful population, it is possible to deal with a constrained optimization problem with computation burden almost the same as that in solving unconstrained optimization problems. genetic algorithm is utilized as the basis of the population space due to its advantages in representing the structure of the space and convenience in computation. Comparisons with four reported algorithms show that our proposed approach has significant advantages while the cost of computation and storage is much lower.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"74 1","pages":"589-593"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cultural algorithms provide a useful framework to make evolutionary algorithms more efficient. However, there is still much for revision especially when they are applied in the constrained optimizations, where a mass of memory and computation cost is currently unavoidable. We propose a novel triple spaces cultural algorithm in which a new framework called anti-culture population consisting of individuals disobeying the guidance of culture is added to the traditional dual inheritance cultural algorithm. The effect that the individuals in the anti-culture population disobey culture's guidance is ensured by some mutation operations which make the individuals away from the Culture guided individual in a radiating way. The anti-culture population makes the evolution of both culture and the population faster and at the same time take a lower risk of the local optimization problem. Moreover, with the triple spaces structure and some novel rules to control the convergence process of the algorithm through awarding the most successful individuals and punishing the unsuccessful population, it is possible to deal with a constrained optimization problem with computation burden almost the same as that in solving unconstrained optimization problems. genetic algorithm is utilized as the basis of the population space due to its advantages in representing the structure of the space and convenience in computation. Comparisons with four reported algorithms show that our proposed approach has significant advantages while the cost of computation and storage is much lower.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三空间培养遗传算法的约束优化
文化算法为提高进化算法的效率提供了一个有用的框架。然而,当它们应用于约束优化时,仍然有很多需要修改的地方,其中大量的内存和计算成本目前是不可避免的。本文提出了一种新的三重空间文化算法,在传统的二元继承文化算法中加入了由不服从文化引导的个体组成的反文化群体框架。反文化群体中的个体不服从文化引导的效果是通过一些变异操作来保证的,这些变异操作使个体以辐射的方式远离文化引导的个体。反文化种群使得文化和种群的进化速度更快,同时降低了局部优化问题的风险。此外,利用三重空间结构和一些新的规则来控制算法的收敛过程,通过奖励最成功的个体和惩罚不成功的群体,使得处理计算量与求解无约束优化问题几乎相同的约束优化问题成为可能。由于遗传算法具有表示种群空间结构和计算方便的优点,因此采用遗传算法作为种群空间的基础。与已有的四种算法的比较表明,本文提出的方法具有明显的优势,而且计算和存储成本都大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1