Variational Autoencoded Regression: High Dimensional Regression of Visual Data on Complex Manifold

Y. Yoo, Sangdoo Yun, H. Chang, Y. Demiris, J. Choi
{"title":"Variational Autoencoded Regression: High Dimensional Regression of Visual Data on Complex Manifold","authors":"Y. Yoo, Sangdoo Yun, H. Chang, Y. Demiris, J. Choi","doi":"10.1109/CVPR.2017.314","DOIUrl":null,"url":null,"abstract":"This paper proposes a new high dimensional regression method by merging Gaussian process regression into a variational autoencoder framework. In contrast to other regression methods, the proposed method focuses on the case where output responses are on a complex high dimensional manifold, such as images. Our contributions are summarized as follows: (i) A new regression method estimating high dimensional image responses, which is not handled by existing regression algorithms, is proposed. (ii) The proposed regression method introduces a strategy to learn the latent space as well as the encoder and decoder so that the result of the regressed response in the latent space coincide with the corresponding response in the data space. (iii) The proposed regression is embedded into a generative model, and the whole procedure is developed by the variational autoencoder framework. We demonstrate the robustness and effectiveness of our method through a number of experiments on various visual data regression problems.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"25 1","pages":"2943-2952"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper proposes a new high dimensional regression method by merging Gaussian process regression into a variational autoencoder framework. In contrast to other regression methods, the proposed method focuses on the case where output responses are on a complex high dimensional manifold, such as images. Our contributions are summarized as follows: (i) A new regression method estimating high dimensional image responses, which is not handled by existing regression algorithms, is proposed. (ii) The proposed regression method introduces a strategy to learn the latent space as well as the encoder and decoder so that the result of the regressed response in the latent space coincide with the corresponding response in the data space. (iii) The proposed regression is embedded into a generative model, and the whole procedure is developed by the variational autoencoder framework. We demonstrate the robustness and effectiveness of our method through a number of experiments on various visual data regression problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变分自编码回归:复杂流形上视觉数据的高维回归
本文提出了一种新的高维回归方法,将高斯过程回归融合到变分自编码器框架中。与其他回归方法相比,所提出的方法侧重于输出响应在复杂的高维流形(如图像)上的情况。本文的主要工作如下:(1)提出了一种新的估计高维图像响应的回归方法,这是现有回归算法无法处理的。(ii)本文提出的回归方法引入了学习潜空间以及学习编码器和解码器的策略,使得潜空间中回归响应的结果与数据空间中相应的响应一致。(iii)提出的回归嵌入到生成模型中,整个过程由变分自编码器框架开发。我们通过对各种视觉数据回归问题的大量实验证明了我们的方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1