{"title":"Soil water infiltration under different land use conditions: in situ tests and modeling","authors":"M. Failache, Lázaro Valentin Zuquette","doi":"10.1590/2318-0331.262120210063","DOIUrl":null,"url":null,"abstract":"ABSTRACT The efficiency and suitability of different models to estimate infiltration rates in Ferralic Arenosols and Rhodic Ferralsols in southern Brazil are evaluated in this paper. The influence of nine types of land use and soil management practices on infiltration modeling is also assessed. Model parameterization was performed fitting 42 experimental infiltration curves obtained by in situ tests with a double-ring infiltrometer. Soil characterization was also performed in laboratory. The results were assessed using basic statistical descriptors and model accuracy indicators (Nash and Sutcliffe efficiency coefficient and root mean square error). The investigated models satisfactorily simulated the infiltration rates and the most accurate model was modified Kostiakov, followed by the Horton; Singh and Yu; modified Holtan; Holtan; Philip; Green and Ampt/Mein and Larson and Kostiakov. Different types of land uses and soil management practices significantly affect the infiltration rates, mainly those combination with great presence of macroporosity that resulted in an erratic infiltration behavior and affected the infiltration model accuracy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.262120210063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The efficiency and suitability of different models to estimate infiltration rates in Ferralic Arenosols and Rhodic Ferralsols in southern Brazil are evaluated in this paper. The influence of nine types of land use and soil management practices on infiltration modeling is also assessed. Model parameterization was performed fitting 42 experimental infiltration curves obtained by in situ tests with a double-ring infiltrometer. Soil characterization was also performed in laboratory. The results were assessed using basic statistical descriptors and model accuracy indicators (Nash and Sutcliffe efficiency coefficient and root mean square error). The investigated models satisfactorily simulated the infiltration rates and the most accurate model was modified Kostiakov, followed by the Horton; Singh and Yu; modified Holtan; Holtan; Philip; Green and Ampt/Mein and Larson and Kostiakov. Different types of land uses and soil management practices significantly affect the infiltration rates, mainly those combination with great presence of macroporosity that resulted in an erratic infiltration behavior and affected the infiltration model accuracy.