Extraction of the pulse width and pulse repetition period of linear FM radar signal using time-frequency analysis

A. A. Ahmad, S. Lawan, M. Ajiya, Zainab Yunusa Yusuf, L. M. Bello
{"title":"Extraction of the pulse width and pulse repetition period of linear FM radar signal using time-frequency analysis","authors":"A. A. Ahmad, S. Lawan, M. Ajiya, Zainab Yunusa Yusuf, L. M. Bello","doi":"10.37121/jase.v3i1.69","DOIUrl":null,"url":null,"abstract":"A common technique used by military to realize low probability of intercept (LPI) is linear frequency modulation (LFM) in the field of electronic intelligence (ELINT). This paper estimates the pulse width (PW) and the pulse repetition period (PRP) of LFM signal using instantaneous powers. The instantaneous powers were obtained either using time-marginal or power maxima approximated from a modified version of the Wigner-Ville distribution (WVD). The instantaneous power was also gotten directly from the signal by multiplication with its conjugate. Measurement was then carried out when the instantaneous power is ‘ON’ (the PW) and when it is ‘OFF’ (the PRP) at carefully selected thresholds. Thereafter, the mWVD-based algorithm was tested in the presence of additive white Gaussian noise (AWGN) at various signal-to-noise ratios. Results obtained during the test showed that the time marginal method emerged the best with minimum signal-to-noise ratio (SNR) of -5dB followed closely by the direct method with minimum SNR of -1dB at different thresholds. The results show that the proposed algorithm based on this modified WVD can be deployed in the practical field to determine radar’s performance and function","PeriodicalId":92218,"journal":{"name":"International journal of advances in science, engineering and technology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advances in science, engineering and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37121/jase.v3i1.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A common technique used by military to realize low probability of intercept (LPI) is linear frequency modulation (LFM) in the field of electronic intelligence (ELINT). This paper estimates the pulse width (PW) and the pulse repetition period (PRP) of LFM signal using instantaneous powers. The instantaneous powers were obtained either using time-marginal or power maxima approximated from a modified version of the Wigner-Ville distribution (WVD). The instantaneous power was also gotten directly from the signal by multiplication with its conjugate. Measurement was then carried out when the instantaneous power is ‘ON’ (the PW) and when it is ‘OFF’ (the PRP) at carefully selected thresholds. Thereafter, the mWVD-based algorithm was tested in the presence of additive white Gaussian noise (AWGN) at various signal-to-noise ratios. Results obtained during the test showed that the time marginal method emerged the best with minimum signal-to-noise ratio (SNR) of -5dB followed closely by the direct method with minimum SNR of -1dB at different thresholds. The results show that the proposed algorithm based on this modified WVD can be deployed in the practical field to determine radar’s performance and function
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用时频分析方法提取线性调频雷达信号的脉宽和脉冲重复周期
线性调频(LFM)是电子情报领域实现低截获概率的常用技术。利用瞬时功率估计LFM信号的脉冲宽度和脉冲重复周期。瞬时功率可以使用时间边际或功率最大值来获得,近似于Wigner-Ville分布(WVD)的改进版本。瞬时功率也可以直接由信号与其共轭函数相乘得到。然后在精心选择的阈值下,当瞬时电源为“ON”(PW)和当它为“OFF”(PRP)时进行测量。然后,在不同信噪比下,对存在加性高斯白噪声(AWGN)的基于mwvd的算法进行了测试。试验结果表明,在不同阈值下,时间边际法表现最好,信噪比最小为-5dB,其次是直接法,信噪比最小为-1dB。结果表明,基于此改进的WVD算法可以应用于实际领域,以确定雷达的性能和功能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability analysis of three-dimensional thick rectangular plate using direct variational energy method Leaching of Ibute-Nze kaolin iron-oxide impurity with oxalic acid process optimization of dissolution conditions using response surface methodology Design and simulation of an effective backup power supply for academic institutions in Nigeria: A case study of NDA postgraduate school Voltage profile improvement and losses minimization for Hayin Rigasa radial network Kaduna using distributed generation Development of a horizontal three bladed windmill with vortex tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1