Body Trajectory Generation Using Quadratic Programming in Bipedal Robots

Min. InJoon, Yoo. DongHa, Ahn. MinSung, Han. Jeakweon
{"title":"Body Trajectory Generation Using Quadratic Programming in Bipedal Robots","authors":"Min. InJoon, Yoo. DongHa, Ahn. MinSung, Han. Jeakweon","doi":"10.23919/ICCAS50221.2020.9268204","DOIUrl":null,"url":null,"abstract":"The preview control walking method, which is commonly used in bipedal walking, requires jerk and ZMP errors as cost functions to generate body trajectory. Since the two inputs are dependent, optimization to form body trajectory is performed simultaneously with weight factors. Therefore, it is often seen that the resulting body trajectory rapidly changes on velocity according to the weight factors. This eventually requires a torque actuator in order to perform such action. In order to overcome this problem, we apply a method used on a quadruped to a bipedal robot. Since, it only targets to minimize the acceleration of the body trajectory, the body does not require rapid speed change. Also, this method can eliminate the computation time needed for preview control referred to preview time. When applying a quadruped robots walking method that has a relatively large support polygon than that of a bipedal robot, stability deterioration may occur. Therefore, we approached to secure ZMP constraints with relatively small support polygon area as within bipedal robots. In this paper we propose a body trajectory generation method that guarantees real-time stability while minimizing acceleration.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"25 1","pages":"251-257"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The preview control walking method, which is commonly used in bipedal walking, requires jerk and ZMP errors as cost functions to generate body trajectory. Since the two inputs are dependent, optimization to form body trajectory is performed simultaneously with weight factors. Therefore, it is often seen that the resulting body trajectory rapidly changes on velocity according to the weight factors. This eventually requires a torque actuator in order to perform such action. In order to overcome this problem, we apply a method used on a quadruped to a bipedal robot. Since, it only targets to minimize the acceleration of the body trajectory, the body does not require rapid speed change. Also, this method can eliminate the computation time needed for preview control referred to preview time. When applying a quadruped robots walking method that has a relatively large support polygon than that of a bipedal robot, stability deterioration may occur. Therefore, we approached to secure ZMP constraints with relatively small support polygon area as within bipedal robots. In this paper we propose a body trajectory generation method that guarantees real-time stability while minimizing acceleration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二次规划的两足机器人身体轨迹生成
在两足行走中常用的预瞄控制步行方法,需要以jerak和ZMP误差作为代价函数来生成身体轨迹。由于这两个输入是相互依赖的,因此与权重因素同时进行优化以形成身体轨迹。因此,经常可以看到,根据权重因素,得到的物体轨迹在速度上迅速变化。这最终需要一个扭矩执行器来执行这样的动作。为了克服这个问题,我们将四足机器人的方法应用到两足机器人上。因为,它的目标只是最小化身体轨迹的加速度,所以身体不需要快速的速度变化。此外,该方法还可以消除基于预览时间的预览控制所需的计算时间。当采用四足机器人的行走方式时,其支撑多边形比两足机器人的行走方式大,可能会导致稳定性下降。因此,我们试图在两足机器人中使用相对较小的支持多边形区域来确保ZMP约束。在本文中,我们提出了一种保证实时稳定性同时最小化加速度的物体轨迹生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time quadrotor actuator fault detection and isolation using multivariate statistical analysis techniques with sensor measurements Autonomous docking of an Unmanned Surface Vehicle based on Reachability Analysis Clutch Torque Estimation of Ball-ramp Dual Clutch Transmission using Higher Order Disturbance Observer Robust Traffic Light Detection and Classification Under Day and Night Conditions Visual Surveillance using Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1