Learning user interface element interactions

Christian Degott, N. P. Borges, A. Zeller
{"title":"Learning user interface element interactions","authors":"Christian Degott, N. P. Borges, A. Zeller","doi":"10.1145/3293882.3330569","DOIUrl":null,"url":null,"abstract":"When generating tests for graphical user interfaces, one central problem is to identify how individual UI elements can be interacted with—clicking, long- or right-clicking, swiping, dragging, typing, or more. We present an approach based on reinforcement learning that automatically learns which interactions can be used for which elements, and uses this information to guide test generation. We model the problem as an instance of the multi-armed bandit problem (MAB problem) from probability theory, and show how its traditional solutions work on test generation, with and without relying on previous knowledge. The resulting guidance yields higher coverage. In our evaluation, our approach shows improvements in statement coverage between 18% (when not using any previous knowledge) and 20% (when reusing previously generated models).","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293882.3330569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

When generating tests for graphical user interfaces, one central problem is to identify how individual UI elements can be interacted with—clicking, long- or right-clicking, swiping, dragging, typing, or more. We present an approach based on reinforcement learning that automatically learns which interactions can be used for which elements, and uses this information to guide test generation. We model the problem as an instance of the multi-armed bandit problem (MAB problem) from probability theory, and show how its traditional solutions work on test generation, with and without relying on previous knowledge. The resulting guidance yields higher coverage. In our evaluation, our approach shows improvements in statement coverage between 18% (when not using any previous knowledge) and 20% (when reusing previously generated models).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习用户界面元素交互
在为图形用户界面生成测试时,一个中心问题是确定如何与单个UI元素进行交互——单击、长击或右击、滑动、拖动、键入等等。我们提出了一种基于强化学习的方法,该方法自动学习哪些交互可以用于哪些元素,并使用该信息来指导测试生成。我们从概率论中将该问题建模为多臂强盗问题(MAB问题)的一个实例,并展示了其传统解决方案在有或没有依赖于先前知识的情况下如何在测试生成中工作。由此产生的指导产生更高的覆盖率。在我们的评估中,我们的方法显示语句覆盖率的提高在18%(不使用任何以前的知识时)和20%(重用以前生成的模型时)之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ISSTA '22: 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022 ISSTA '21: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021 Automatic support for the identification of infeasible testing requirements Program-aware fuzzing for MQTT applications ISSTA '20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1