{"title":"Balanced ellipsoidal vortex at finite Rossby number","authors":"W. McKiver","doi":"10.1080/03091929.2020.1755671","DOIUrl":null,"url":null,"abstract":"ABSTRACT Here we examine the motion of an isolated ellipsoidal vortex in a rotating stratified fluid. We derive an analytical solution to a set of balanced equations at the next order to quasi-geostrophic theory, providing insights into geophysical vortices at finite Rossby number ε. This is achieved through the solution of a set of complicated Poisson equations. Though complicated, the analytical solution give rise to a velocity field that depends linearly on the spatial coordinates inside the vortex, and, thus preserves the ellipsoidal form. From this general solution, we determine a number of equilibria where the vortex rotates steadily about the vertical axis and examine their stability. At the next order to QG, one finds asymmetry in the behaviour of cyclonic and anti-cyclonic vortices, with anti-cyclonic vortices rotating faster and generally more unstable than cyclonic vortices.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"64 1","pages":"453 - 480"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1755671","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Here we examine the motion of an isolated ellipsoidal vortex in a rotating stratified fluid. We derive an analytical solution to a set of balanced equations at the next order to quasi-geostrophic theory, providing insights into geophysical vortices at finite Rossby number ε. This is achieved through the solution of a set of complicated Poisson equations. Though complicated, the analytical solution give rise to a velocity field that depends linearly on the spatial coordinates inside the vortex, and, thus preserves the ellipsoidal form. From this general solution, we determine a number of equilibria where the vortex rotates steadily about the vertical axis and examine their stability. At the next order to QG, one finds asymmetry in the behaviour of cyclonic and anti-cyclonic vortices, with anti-cyclonic vortices rotating faster and generally more unstable than cyclonic vortices.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.