K. Sunami, Y. Sakai, R. Takehara, H. Adachi, K. Miyagawa, S. Horiuchi, K. Kanoda
{"title":"Magnetic excitations in an ionic spin-chain system with a nonmagnetic ferroelectric instability","authors":"K. Sunami, Y. Sakai, R. Takehara, H. Adachi, K. Miyagawa, S. Horiuchi, K. Kanoda","doi":"10.1103/physrevresearch.2.043333","DOIUrl":null,"url":null,"abstract":"Cross-correlation between magnetism and dielectric is expected to offer novel emergent phenomena. Here, magnetic excitations in the organic donor-acceptor spin-chain system, TTF-BA, with a ferroelectric ground state is investigated by $^1$H-NMR spectroscopy. A nonmagnetic transition with a ferroelectric order is marked by sharp drops in NMR shift and nuclear spin relaxation rate $T_1^{-1}$ at 53 K. Remarkably, the analyses of the NMR shift and $T_1^{-1}$ dictate that the paramagnetic spin susceptibility in TTF-BA is substantially suppressed from that expected for the 1D Heisenberg spins. We propose that the spin-lattice coupling and the ferroelectric instability cooperate to promote precursory polar singlet formation in the ionic spin system with a nonmagnetic ferroelectric instability.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.043333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Cross-correlation between magnetism and dielectric is expected to offer novel emergent phenomena. Here, magnetic excitations in the organic donor-acceptor spin-chain system, TTF-BA, with a ferroelectric ground state is investigated by $^1$H-NMR spectroscopy. A nonmagnetic transition with a ferroelectric order is marked by sharp drops in NMR shift and nuclear spin relaxation rate $T_1^{-1}$ at 53 K. Remarkably, the analyses of the NMR shift and $T_1^{-1}$ dictate that the paramagnetic spin susceptibility in TTF-BA is substantially suppressed from that expected for the 1D Heisenberg spins. We propose that the spin-lattice coupling and the ferroelectric instability cooperate to promote precursory polar singlet formation in the ionic spin system with a nonmagnetic ferroelectric instability.