{"title":"Higher order normal modes","authors":"G. Gaeta, S. Walcher","doi":"10.3934/jgm.2020026","DOIUrl":null,"url":null,"abstract":"Normal modes are intimately related to the quadratic approximation of a potential at its hyperbolic equilibria. Here we extend the notion to the case where the Taylor expansion for the potential at a critical point starts with higher order terms, and show that such an extension shares some of the properties of standard normal modes. Some symmetric examples are considered in detail.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Normal modes are intimately related to the quadratic approximation of a potential at its hyperbolic equilibria. Here we extend the notion to the case where the Taylor expansion for the potential at a critical point starts with higher order terms, and show that such an extension shares some of the properties of standard normal modes. Some symmetric examples are considered in detail.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.