Random ensemble metrics for object recognition

Tatsuo Kozakaya, S. Ito, Susumu Kubota
{"title":"Random ensemble metrics for object recognition","authors":"Tatsuo Kozakaya, S. Ito, Susumu Kubota","doi":"10.1109/ICCV.2011.6126466","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and generic approach for metric learning, random ensemble metrics (REMetric). To improve generalization performance, we introduce the concept of ensemble learning to the metric learning scheme. Unlike previous methods, our method does not optimize the global objective function for the whole training data. It learns multiple discriminative projection vectors obtained from linear support vector machines (SVM) using randomly subsampled training data. The final metric matrix is then obtained by integrating these vectors. As a result of using SVM, the learned metric has an excellent scalability for the dimensionality of features. Therefore, it does not require any prior dimensionality reduction techniques such as PCA. Moreover, our method allows us to unify dimensionality reduction and metric learning by controlling the number of the projection vectors. We demonstrate through experiments, that our method can avoid overfitting even though a relatively small number of training data is provided. The experiments are performed with three different datasets; the Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset, the Labeled Face in the Wild (LFW) dataset and the Oxford 102 category flower dataset. The results show that our method achieves equivalent or superior performance compared to existing state-of-the-art metric learning methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents a novel and generic approach for metric learning, random ensemble metrics (REMetric). To improve generalization performance, we introduce the concept of ensemble learning to the metric learning scheme. Unlike previous methods, our method does not optimize the global objective function for the whole training data. It learns multiple discriminative projection vectors obtained from linear support vector machines (SVM) using randomly subsampled training data. The final metric matrix is then obtained by integrating these vectors. As a result of using SVM, the learned metric has an excellent scalability for the dimensionality of features. Therefore, it does not require any prior dimensionality reduction techniques such as PCA. Moreover, our method allows us to unify dimensionality reduction and metric learning by controlling the number of the projection vectors. We demonstrate through experiments, that our method can avoid overfitting even though a relatively small number of training data is provided. The experiments are performed with three different datasets; the Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset, the Labeled Face in the Wild (LFW) dataset and the Oxford 102 category flower dataset. The results show that our method achieves equivalent or superior performance compared to existing state-of-the-art metric learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于对象识别的随机集成度量
本文提出了一种新的通用度量学习方法——随机集成度量(REMetric)。为了提高泛化性能,我们在度量学习方案中引入了集成学习的概念。与以前的方法不同,我们的方法没有对整个训练数据进行全局目标函数优化。该算法利用随机下采样的训练数据,学习线性支持向量机(SVM)得到的多个判别投影向量。然后通过对这些向量积分得到最终的度量矩阵。由于使用支持向量机,学习到的度量对特征的维数有很好的可扩展性。因此,它不需要任何先前的降维技术,如PCA。此外,我们的方法允许我们通过控制投影向量的数量来统一降维和度量学习。我们通过实验证明,即使提供相对较少的训练数据,我们的方法也可以避免过拟合。实验用三种不同的数据集进行;视点不变行人识别(VIPeR)数据集、野生标记脸(LFW)数据集和牛津102分类花数据集。结果表明,与现有的最先进的度量学习方法相比,我们的方法达到了相当或更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1