Textural Feature Analysis for Ultrasound Breast Tumor Images

Qiuxia Chen, Qi Liu
{"title":"Textural Feature Analysis for Ultrasound Breast Tumor Images","authors":"Qiuxia Chen, Qi Liu","doi":"10.1109/ICBBE.2010.5516918","DOIUrl":null,"url":null,"abstract":"Texture is one of the important characteristics used in identifying objects or regions of interest in an image. This paper describes some textural features based on integrated spatial gray level co-occurrence matrix, and illustrates the effectiveness of four textural features in categorizing ultrasound breast tumor images by means of Fuzzy C-means and K-medoid clustering algorithms respectively. The experimental identification accuracy is 72.6415 percent. These results indicate that textural features probably have a general applicability for classification of breast tumors.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5516918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Texture is one of the important characteristics used in identifying objects or regions of interest in an image. This paper describes some textural features based on integrated spatial gray level co-occurrence matrix, and illustrates the effectiveness of four textural features in categorizing ultrasound breast tumor images by means of Fuzzy C-means and K-medoid clustering algorithms respectively. The experimental identification accuracy is 72.6415 percent. These results indicate that textural features probably have a general applicability for classification of breast tumors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺超声肿瘤图像的纹理特征分析
纹理是用于识别图像中感兴趣的物体或区域的重要特征之一。本文描述了基于集成空间灰度共生矩阵的一些纹理特征,并分别用模糊C-means和k - medium聚类算法说明了四种纹理特征在超声乳腺肿瘤图像分类中的有效性。实验识别准确率为72.6415%。这些结果表明,纹理特征可能对乳腺肿瘤的分类具有普遍的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Codon Usage Bias in the Newly Identified DEV UL53 Gene Indoor Air Quality Assessment in an Art Gallery with an HVAC System Multi-Method Measurement on Mercury Concentration in Plants Optimization of Nutrition Condition for Biodegradation of Diesel Oil Using Response Surface Methodology Application of SWAT in Non-Point Source Pollution of Upper Xiliaohe Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1