Effect of Viscosity on Stopping Power for a Charged Particle Moving above Two-Dimensional Electron Gas

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Laser and Particle Beams Pub Date : 2022-04-29 DOI:10.1155/2022/6903026
Lei Chen, Yu Wang, Yuesong Jia, Xianjun Yang, Chun-Zhi Li, Lin Yi, Wei Jiang, Ya Zhang
{"title":"Effect of Viscosity on Stopping Power for a Charged Particle Moving above Two-Dimensional Electron Gas","authors":"Lei Chen, Yu Wang, Yuesong Jia, Xianjun Yang, Chun-Zhi Li, Lin Yi, Wei Jiang, Ya Zhang","doi":"10.1155/2022/6903026","DOIUrl":null,"url":null,"abstract":"In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. The stopping power, perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and numerically calculated. The calculation results show that viscosity affects the spatial distribution and amplitude of the velocity field. The stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron polarization and induced electric field in 2D electron gas with the viscosity. The values of the stopping power may be more accurate after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"22 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/6903026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. The stopping power, perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and numerically calculated. The calculation results show that viscosity affects the spatial distribution and amplitude of the velocity field. The stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron polarization and induced electric field in 2D electron gas with the viscosity. The values of the stopping power may be more accurate after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黏度对带电粒子在二维电子气体上方运动时停止力的影响
在二维电子系统中,当电子-电子碰撞比杂质或声子散射发生得更频繁时,粘性流动占主导地位。在这项工作中,提出了一个考虑粘性的量子流体力学模型来研究在二维粘性电子气体上运动的带电粒子的相互作用。理论分析和数值计算了停止功率、微扰电子气体密度和速度矢量场的空间分布。计算结果表明,黏度会影响速度场的空间分布和振幅。计算出了描述离子与二维电子气相互作用的必要量——停止功率,表明二维电子气中动态电子极化和感应电场随着粘度的减弱而减弱,入射粒子的能量损失较小。在考虑了粘度的影响后,停止功率的数值可能更准确。我们的研究结果可能为通过改变黏度来控制离子与金属或半导体异质结构表面的二维电子气体的相互作用开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Laser and Particle Beams
Laser and Particle Beams PHYSICS, APPLIED-
CiteScore
1.90
自引率
11.10%
发文量
25
审稿时长
1 months
期刊介绍: Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.
期刊最新文献
Numerical analysis of X-ray multilayer Fresnel zone plates with high aspect ratios Hot electron emission characteristics from thin metal foil targets irradiated by terawatt laser Flux and estimated spectra from a low-intensity laser-driven X-ray source Numerical Study of Carbon Nanofoam Targets for Laser-Driven Inertial Fusion Experiments Helium as a Surrogate for Deuterium in LPI Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1