A review of factors affecting the use of Electrical Potential Drop (EPD) for creep life monitoring

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials at High Temperatures Pub Date : 2023-02-22 DOI:10.1080/09603409.2023.2175563
Adam Wojcik, Matthew Waitt, Alberto S. Santos, A. Shibli
{"title":"A review of factors affecting the use of Electrical Potential Drop (EPD) for creep life monitoring","authors":"Adam Wojcik, Matthew Waitt, Alberto S. Santos, A. Shibli","doi":"10.1080/09603409.2023.2175563","DOIUrl":null,"url":null,"abstract":"ABSTRACT To help determine remaining lifetime of pressure vessels suffering creep, the authors have previously developed a method and presented promising results using a combination of AC and DC electrical potential drop (EPD) on-line monitoring, detecting both final cracking as well as incipient creep damage. The latter was tentatively ascribed to the development of cavitation damage, but recent modelling and separate off-line measurements have shown that cavitation is unlikely to provide enough of a change in electrical properties to explain all of the variations previously observed. Here we gather the results obtained to date, and review their likely relationships in an attempt to obtain a greater insight into the mechanisms at play. Whilst changes in both on-line and off-line EPD are largely in accord, the belief now is that the changes seen cannot be fully explained by cavitation development and that EPD is responding to other creep induced phenomena as well.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"89 1","pages":"148 - 164"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2175563","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT To help determine remaining lifetime of pressure vessels suffering creep, the authors have previously developed a method and presented promising results using a combination of AC and DC electrical potential drop (EPD) on-line monitoring, detecting both final cracking as well as incipient creep damage. The latter was tentatively ascribed to the development of cavitation damage, but recent modelling and separate off-line measurements have shown that cavitation is unlikely to provide enough of a change in electrical properties to explain all of the variations previously observed. Here we gather the results obtained to date, and review their likely relationships in an attempt to obtain a greater insight into the mechanisms at play. Whilst changes in both on-line and off-line EPD are largely in accord, the belief now is that the changes seen cannot be fully explained by cavitation development and that EPD is responding to other creep induced phenomena as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响电势降(EPD)用于蠕变寿命监测的因素综述
为了帮助确定承受蠕变的压力容器的剩余寿命,作者之前开发了一种方法,并展示了一种令人满意的结果,该方法使用交流和直流电位降(EPD)在线监测相结合,检测最终开裂和早期蠕变损伤。后者暂时归因于空化损伤的发展,但最近的建模和单独的离线测量表明,空化不太可能提供足够的电性能变化来解释之前观察到的所有变化。在这里,我们收集了迄今为止获得的结果,并回顾了它们之间可能的关系,试图更深入地了解起作用的机制。虽然在线和离线环境下的变化基本一致,但现在的观点是,所看到的变化不能完全用空化发展来解释,而且环境保护也对其他蠕变现象做出了反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials at High Temperatures
Materials at High Temperatures 工程技术-材料科学:综合
CiteScore
1.90
自引率
15.40%
发文量
58
审稿时长
>12 weeks
期刊介绍: Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered. Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself. Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.
期刊最新文献
Effect of concave–convex degree of substrate surface on thermal shock performance of Cr coating Estimating the Monkman−Grant relation in the presence of errors in measurement of times to failure and minimum creep rates: with application to some high temperature materials Comparative assessment of a continuum damage mechanics-based creep damage models for India-specific RAFM steel A comparison of hyperbolic sine creep life equations and data correlation methods for these equations Microstructure evolution of Incoloy 800H in industrial environment and correlation with creep mechanisms from literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1