{"title":"Globally optimal solution to multi-object tracking with merged measurements","authors":"João F. Henriques, Rui Caseiro, Jorge P. Batista","doi":"10.1109/ICCV.2011.6126532","DOIUrl":null,"url":null,"abstract":"Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"13 1","pages":"2470-2477"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145
Abstract
Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.