N. Abboud, J. Mould, G. Wojcik, D. Vaughan, D. Powell, V. Murray, C. Maclean
{"title":"Thermal generation, diffusion and dissipation in 1-3 piezocomposite sonar transducers: finite element analysis and experimental measurements","authors":"N. Abboud, J. Mould, G. Wojcik, D. Vaughan, D. Powell, V. Murray, C. Maclean","doi":"10.1109/ULTSYM.1997.661725","DOIUrl":null,"url":null,"abstract":"Thermal management is an important consideration in ultrasound transducer design. It arises in satisfying regulatory and safety requirements in diagnostic and therapeutic ultrasound, as well as in sustaining performance in high power applications such as underwater sonar. A finite element modeling approach was developed to aid in the analysis of this coupled electro-mechanical-thermal problem. The finite element model tracks the damping losses in the electromechanical portion of the problem and converts the lost energy into a thermal dose which constitutes the \"input\" to the thermal portion of the problem. The resultant temperature spatial and temporal distribution is then solved for. This modeling approach was used to study several 1-3 piezocomposite high power transducers for which experimental data was available. Previous experimental evaluation has demonstrated that these devices can suffer from a degradation in performance due to significant temperature rises at power levels of approximately 2 W/cm/sup 2/ for continuous operation, whereas they can operate efficiently at power levels greater than 20 W/cm/sup 2/ when the duty cycle is reduced below 10%. A detailed thermal analysis of these transducers with respect to efficiency of the thermal dissipation within them is required with a view to understanding and consequently improving the high drive performance of these devices. The goal of this preliminary study is to evaluate the modeling approach and identify key parameters to which the solution is sensitive. Parameters so identified, be they material constants or modeling approaches, will be subject to more complete characterization in follow-up studies aimed at quantitative validation of computational modeling of thermal management in ultrasonic applications.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":"89 1","pages":"895-900 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.661725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Thermal management is an important consideration in ultrasound transducer design. It arises in satisfying regulatory and safety requirements in diagnostic and therapeutic ultrasound, as well as in sustaining performance in high power applications such as underwater sonar. A finite element modeling approach was developed to aid in the analysis of this coupled electro-mechanical-thermal problem. The finite element model tracks the damping losses in the electromechanical portion of the problem and converts the lost energy into a thermal dose which constitutes the "input" to the thermal portion of the problem. The resultant temperature spatial and temporal distribution is then solved for. This modeling approach was used to study several 1-3 piezocomposite high power transducers for which experimental data was available. Previous experimental evaluation has demonstrated that these devices can suffer from a degradation in performance due to significant temperature rises at power levels of approximately 2 W/cm/sup 2/ for continuous operation, whereas they can operate efficiently at power levels greater than 20 W/cm/sup 2/ when the duty cycle is reduced below 10%. A detailed thermal analysis of these transducers with respect to efficiency of the thermal dissipation within them is required with a view to understanding and consequently improving the high drive performance of these devices. The goal of this preliminary study is to evaluate the modeling approach and identify key parameters to which the solution is sensitive. Parameters so identified, be they material constants or modeling approaches, will be subject to more complete characterization in follow-up studies aimed at quantitative validation of computational modeling of thermal management in ultrasonic applications.