{"title":"Corning0120 High-Lead Glass Subject to Shock Loading","authors":"B. Farfan, W. Reinhart, S. Alexander","doi":"10.1115/hvis2019-031","DOIUrl":null,"url":null,"abstract":"\n Equation of state properties were studied for the high-lead glass Corning 0120, which is a potash-soda-lead glass also referred to as G12. This glass, which contains approximately 30% PbO by weight and has a density, ρo, of 3.034 g/cm3 possesses properties suitable for many applications in industry such as optical components for space exploration instrumentation. Further understanding of its mechanical properties is desired for more complex applications in various fields, including applications where the glass may experience high-pressure shock loading. In this work plate impact experiments were conducted to determine the dynamic response of Corning 0120 at high stress levels. Tests were conducted over the pressure range from approximately 5 to 24 GPa utilizing the 90 mm bore single-stage powder driven gas gun at the Sandia National Laboratories STAR Facility. For this study, we used one-inch diameter Corning 0120 glass samples of two different thicknesses (3 mm and 7 mm) to use the evolution of the shock wave propagation through the material for analysis. The time-resolved material response was measured by means of a Velocity Interferometer System for Any Reflector system (VISAR). Results will be presented detailing the high-pressure shock loading response characteristics of the high-lead glass Corning 0120. Comparisons are made with similar results for lead free glass to assess the most prominent changes compared to lower density glasses and other lead filled glasses.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Equation of state properties were studied for the high-lead glass Corning 0120, which is a potash-soda-lead glass also referred to as G12. This glass, which contains approximately 30% PbO by weight and has a density, ρo, of 3.034 g/cm3 possesses properties suitable for many applications in industry such as optical components for space exploration instrumentation. Further understanding of its mechanical properties is desired for more complex applications in various fields, including applications where the glass may experience high-pressure shock loading. In this work plate impact experiments were conducted to determine the dynamic response of Corning 0120 at high stress levels. Tests were conducted over the pressure range from approximately 5 to 24 GPa utilizing the 90 mm bore single-stage powder driven gas gun at the Sandia National Laboratories STAR Facility. For this study, we used one-inch diameter Corning 0120 glass samples of two different thicknesses (3 mm and 7 mm) to use the evolution of the shock wave propagation through the material for analysis. The time-resolved material response was measured by means of a Velocity Interferometer System for Any Reflector system (VISAR). Results will be presented detailing the high-pressure shock loading response characteristics of the high-lead glass Corning 0120. Comparisons are made with similar results for lead free glass to assess the most prominent changes compared to lower density glasses and other lead filled glasses.