Faster R-CNN with densenet for scale aware pedestrian detection vis-à-vis hard negative suppression

Suman Kumar Choudhury, R. P. Padhy, P. K. Sa
{"title":"Faster R-CNN with densenet for scale aware pedestrian detection vis-à-vis hard negative suppression","authors":"Suman Kumar Choudhury, R. P. Padhy, P. K. Sa","doi":"10.1109/MLSP.2017.8168128","DOIUrl":null,"url":null,"abstract":"This paper presents a fully convolutional architecture for pedestrian detection. The DenseNet model is incorporated in the Faster R-CNN framework to extract the deep convolutional features. A two-phase approach is suggested to minimize the false positives owing to hard negative backgrounds. Feature maps from multiple intermediate layers are taken into consideration to facilitate small-scale detection. The proposed method alongside few competent schemes are compared on two benchmark datasets. The obtained results demonstrate the potential of our approach in addressing the real world challenges.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"88 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a fully convolutional architecture for pedestrian detection. The DenseNet model is incorporated in the Faster R-CNN framework to extract the deep convolutional features. A two-phase approach is suggested to minimize the false positives owing to hard negative backgrounds. Feature maps from multiple intermediate layers are taken into consideration to facilitate small-scale detection. The proposed method alongside few competent schemes are compared on two benchmark datasets. The obtained results demonstrate the potential of our approach in addressing the real world challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于dendenet的快速R-CNN尺度感知行人检测与-à-vis硬负抑制
本文提出了一种用于行人检测的全卷积结构。DenseNet模型被整合到Faster R-CNN框架中以提取深度卷积特征。建议采用两阶段方法,以尽量减少由于硬阴性背景造成的误报。考虑了多个中间层的特征映射,便于小尺度检测。在两个基准数据集上比较了所提出的方法和几种有效方案。获得的结果证明了我们的方法在解决现实世界挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1