Logic gates and memory elements design and simulation using PMOS organic transistor

P. Branchini, Andrea Fabbh, Domenico Riondino, L. Mariucci, M. Rapisarda, A. Valletta, A. Aloisio, F. Capua
{"title":"Logic gates and memory elements design and simulation using PMOS organic transistor","authors":"P. Branchini, Andrea Fabbh, Domenico Riondino, L. Mariucci, M. Rapisarda, A. Valletta, A. Aloisio, F. Capua","doi":"10.1109/ISIE.2017.8001580","DOIUrl":null,"url":null,"abstract":"Multi-flngered OTFTs, with staggered top-gate configuration have been fabricated on flexible polyethylene-naphtalate (PEN) substrates (100 μm thick). Inkjet printing technique has been used to setup the silver contacts, while the organic layers and the dielectric fluoropolymer have been deposited by spin-coating. The p-type polymeric semiconductor is a solution processed 6,13-bis(triisopropyl-silyletynyl) pentacene. The semiconductor layer thickness is about 30 nm, while the dielectric fluoropolymer is 400 nm thick. These transistors have been characterized and a DC, and a transient accurate models have been developed and imported in CADENCE. Finally, SPECTRE has been used to simulate model circuits based on such a device. In this work we describe the design of high frequency logic gates and preliminary flip-flops design, exploiting PMOS organic transistor and its expected performances.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"89 1","pages":"2097-2101"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-flngered OTFTs, with staggered top-gate configuration have been fabricated on flexible polyethylene-naphtalate (PEN) substrates (100 μm thick). Inkjet printing technique has been used to setup the silver contacts, while the organic layers and the dielectric fluoropolymer have been deposited by spin-coating. The p-type polymeric semiconductor is a solution processed 6,13-bis(triisopropyl-silyletynyl) pentacene. The semiconductor layer thickness is about 30 nm, while the dielectric fluoropolymer is 400 nm thick. These transistors have been characterized and a DC, and a transient accurate models have been developed and imported in CADENCE. Finally, SPECTRE has been used to simulate model circuits based on such a device. In this work we describe the design of high frequency logic gates and preliminary flip-flops design, exploiting PMOS organic transistor and its expected performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PMOS有机晶体管的逻辑门和存储元件设计与仿真
在100 μm厚的柔性聚乙烯-萘酸酯(PEN)衬底上制备了交错顶栅结构的多翼缘otft。采用喷墨印刷技术建立银触点,采用旋涂法沉积有机层和介电含氟聚合物。p型聚合物半导体是由6,13-二(三异丙基-硅乙基)并戊烯溶液加工而成。半导体层厚度约为30 nm,而介电含氟聚合物的厚度为400 nm。对这些晶体管进行了表征和直流,并开发了瞬态精确模型并导入CADENCE。最后,利用SPECTRE对基于该器件的模型电路进行了仿真。在本工作中,我们描述了高频逻辑门的设计和触发器的初步设计,利用PMOS有机晶体管及其预期的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1