{"title":"Performance of a Na Based Ionic Liquid Based Gel Polymer Electrolyte in a Redox Capacitor","authors":"K. W. Prasadini, K. Perera, K. Vidanapathirana","doi":"10.2139/ssrn.3864800","DOIUrl":null,"url":null,"abstract":"In the modern technology based society, attraction towards the redox capacitors is increasing rapidly as one of the best energy storage devices. Capacitors fabricated by using the ionic liquid (IL) based gel polymer electrolytes (GPEs) have been attracted tremendously as eco-friendly energy sources based on their unique features such as satisfactory specific capacitance, good cycle ability, and good stability. The present study reports about a redox capacitor fabricated with the IL, 1-ethyl-3-methylimidazoliumbis(trifluoromethanesulfonyl) imide (1E3Mbis(TF)I) and sodium trifluoromethanesulfonate (CF 3 NaO 3 S - NaTF). Reported highest room temperature conductivity was 7.7 x 10 -4 S cm -1 with the composition of 1 polyvinyl chloride (PVC): 1 1E3MIbis(TF)I: 2 NaTF. The conductivity mechanism of GPEs follows free volume theory. The redox capacitor with the configuration, polypyrrole (PPy): NaTF / 1 PVC: 1 1E3MIbis(TF)I: 2 NaTF / PPy: NaTF showed a single electrode specific capacitance (C SC ) of 31.5 F g -1 based on Nyquist plot. Its relaxation time was 13.6 s and this confirms fairly fast charge storage process. Initial C SC of the redox capacitor was about 126.3 F g -1 for the potential window from -1.2 V to 1.2 V. Initial single electrode discharge capacitance (C sd ) observed by Full words Galvanostatic charge discharge (GCD) test under a constant current of 240 μA was 24.1 F g -1 . It was gradually decreased to 9.57 F g -1 with cycling due to the formation of a passivation layer on the electrode and the degradation of electrolyte/electrode interface.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3864800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the modern technology based society, attraction towards the redox capacitors is increasing rapidly as one of the best energy storage devices. Capacitors fabricated by using the ionic liquid (IL) based gel polymer electrolytes (GPEs) have been attracted tremendously as eco-friendly energy sources based on their unique features such as satisfactory specific capacitance, good cycle ability, and good stability. The present study reports about a redox capacitor fabricated with the IL, 1-ethyl-3-methylimidazoliumbis(trifluoromethanesulfonyl) imide (1E3Mbis(TF)I) and sodium trifluoromethanesulfonate (CF 3 NaO 3 S - NaTF). Reported highest room temperature conductivity was 7.7 x 10 -4 S cm -1 with the composition of 1 polyvinyl chloride (PVC): 1 1E3MIbis(TF)I: 2 NaTF. The conductivity mechanism of GPEs follows free volume theory. The redox capacitor with the configuration, polypyrrole (PPy): NaTF / 1 PVC: 1 1E3MIbis(TF)I: 2 NaTF / PPy: NaTF showed a single electrode specific capacitance (C SC ) of 31.5 F g -1 based on Nyquist plot. Its relaxation time was 13.6 s and this confirms fairly fast charge storage process. Initial C SC of the redox capacitor was about 126.3 F g -1 for the potential window from -1.2 V to 1.2 V. Initial single electrode discharge capacitance (C sd ) observed by Full words Galvanostatic charge discharge (GCD) test under a constant current of 240 μA was 24.1 F g -1 . It was gradually decreased to 9.57 F g -1 with cycling due to the formation of a passivation layer on the electrode and the degradation of electrolyte/electrode interface.
在以技术为基础的现代社会,氧化还原电容器作为最好的储能装置之一,其吸引力日益增加。基于离子液体凝胶聚合物电解质(GPEs)的电容器由于具有良好的比电容、良好的循环能力和良好的稳定性等特点,作为一种环保能源受到了广泛的关注。本文报道了用IL、1-乙基-3-甲基咪唑(三氟甲烷磺酰基)亚胺(1E3Mbis(TF)I)和三氟甲烷磺酸钠(cf3nao3s - NaTF)制备氧化还原电容器。报道的最高室温电导率为7.7 × 10 -4 S cm -1,组成为1聚氯乙烯(PVC): 1 1E3MIbis(TF): 2 NaTF。gpe的导电机理遵循自由体积理论。根据Nyquist图,聚吡啶(PPy): NaTF / 1 PVC: 1 1E3MIbis(TF)I: 2 NaTF / PPy: NaTF结构的氧化还原电容器的单电极比电容(SC)为31.5 F g -1。它的弛豫时间为13.6 s,这证实了电荷存储过程相当快。在-1.2 V至1.2 V的电位窗口内,氧化还原电容器的初始C - SC约为126.3℉-1。在240 μA恒流充电放电(GCD)试验条件下,观察到的初始单电极放电电容(csd)为24.1 F g -1。随着循环的进行,由于电极表面钝化层的形成和电解质/电极界面的降解,该系数逐渐降低到9.57 F g -1。