Enhanced Mixture Population Monte Carlo Via Stochastic Optimization and Markov Chain Monte Carlo Sampling

Yousef El-Laham, P. Djurić, M. Bugallo
{"title":"Enhanced Mixture Population Monte Carlo Via Stochastic Optimization and Markov Chain Monte Carlo Sampling","authors":"Yousef El-Laham, P. Djurić, M. Bugallo","doi":"10.1109/ICASSP40776.2020.9053410","DOIUrl":null,"url":null,"abstract":"The population Monte Carlo (PMC) algorithm is a popular adaptive importance sampling (AIS) method used for approximate computation of intractable integrals. Over the years, many advances have been made in the theory and implementation of PMC schemes. The mixture PMC (M-PMC) algorithm, for instance, optimizes the parameters of a mixture proposal distribution in a way that minimizes that Kullback-Leibler divergence to the target distribution. The parameters in M-PMC are updated using a single step of expectation maximization (EM), which limits its accuracy. In this work, we introduce a novel M-PMC algorithm that optimizes the parameters of a mixture proposal distribution, where parameter updates are resolved via stochastic optimization instead of EM. The stochastic gradients w.r.t. each of the mixture parameters are approximated using a population of Markov chain Monte Carlo samplers. We validate the proposed scheme via numerical simulations on an example where the considered target distribution is multimodal.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"5475-5479"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The population Monte Carlo (PMC) algorithm is a popular adaptive importance sampling (AIS) method used for approximate computation of intractable integrals. Over the years, many advances have been made in the theory and implementation of PMC schemes. The mixture PMC (M-PMC) algorithm, for instance, optimizes the parameters of a mixture proposal distribution in a way that minimizes that Kullback-Leibler divergence to the target distribution. The parameters in M-PMC are updated using a single step of expectation maximization (EM), which limits its accuracy. In this work, we introduce a novel M-PMC algorithm that optimizes the parameters of a mixture proposal distribution, where parameter updates are resolved via stochastic optimization instead of EM. The stochastic gradients w.r.t. each of the mixture parameters are approximated using a population of Markov chain Monte Carlo samplers. We validate the proposed scheme via numerical simulations on an example where the considered target distribution is multimodal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机优化和马尔可夫链蒙特卡罗抽样的增强混合种群蒙特卡罗
总体蒙特卡罗(PMC)算法是一种常用的自适应重要抽样(AIS)方法,用于求解难解积分的近似计算。多年来,PMC方案在理论和实施方面取得了许多进展。例如,混合PMC (M-PMC)算法以最小化目标分布的Kullback-Leibler散度的方式优化混合建议分布的参数。M-PMC的参数更新采用单步期望最大化方法,这限制了其精度。在这项工作中,我们引入了一种新的M-PMC算法,该算法优化了混合建议分布的参数,其中参数更新通过随机优化而不是EM来解决。每个混合参数的随机梯度w.r.t.使用马尔可夫链蒙特卡罗采样器的总体来近似。在多模态目标分布的情况下,通过数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1