{"title":"Small Value Parallel Repetition for General Games","authors":"M. Braverman, A. Garg","doi":"10.1145/2746539.2746565","DOIUrl":null,"url":null,"abstract":"We prove a parallel repetition theorem for general games with value tending to 0. Previously Dinur and Steurer proved such a theorem for the special case of projection games. We use information theoretic techniques in our proof. Our proofs also extend to the high value regime (value close to 1) and provide alternate proofs for the parallel repetition theorems of Holenstein and Rao for general and projection games respectively. We also extend the example of Feige and Verbitsky to show that the small-value parallel repetition bound we obtain is tight. Our techniques are elementary in that we only need to employ basic information theory and discrete probability in the small-value parallel repetition proof.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
We prove a parallel repetition theorem for general games with value tending to 0. Previously Dinur and Steurer proved such a theorem for the special case of projection games. We use information theoretic techniques in our proof. Our proofs also extend to the high value regime (value close to 1) and provide alternate proofs for the parallel repetition theorems of Holenstein and Rao for general and projection games respectively. We also extend the example of Feige and Verbitsky to show that the small-value parallel repetition bound we obtain is tight. Our techniques are elementary in that we only need to employ basic information theory and discrete probability in the small-value parallel repetition proof.