Hanbo Cai, Pengcheng Zhang, Hai Dong, Lars Grunske, Shunhui Ji, Tianhao Yuan
{"title":"Adversarial example‐based test case generation for black‐box speech recognition systems","authors":"Hanbo Cai, Pengcheng Zhang, Hai Dong, Lars Grunske, Shunhui Ji, Tianhao Yuan","doi":"10.1002/stvr.1848","DOIUrl":null,"url":null,"abstract":"Test case generation techniques based on adversarial examples are commonly used to enhance the reliability and robustness of image‐based and text‐based machine learning applications. However, efficient techniques for speech recognition systems are still absent. This paper proposes a family of methods that generate targeted adversarial examples for speech recognition systems. All are based on the firefly algorithm (F), and are enhanced with gauss mutations and / or gradient estimation (F‐GM, F‐GE, F‐GMGE) to fit the specific problem of targeted adversarial test case generation. We conduct an experimental evaluation on three different types of speech datasets, including Google Command, Common Voice and LibriSpeech. In addition, we recruit volunteers to evaluate the performance of the adversarial examples. The experimental results show that, compared with existing approaches, these approaches can effectively improve the success rate of the targeted adversarial example generation. The code is publicly available at https://github.com/HanboCai/FGMGE.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"36 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1848","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Test case generation techniques based on adversarial examples are commonly used to enhance the reliability and robustness of image‐based and text‐based machine learning applications. However, efficient techniques for speech recognition systems are still absent. This paper proposes a family of methods that generate targeted adversarial examples for speech recognition systems. All are based on the firefly algorithm (F), and are enhanced with gauss mutations and / or gradient estimation (F‐GM, F‐GE, F‐GMGE) to fit the specific problem of targeted adversarial test case generation. We conduct an experimental evaluation on three different types of speech datasets, including Google Command, Common Voice and LibriSpeech. In addition, we recruit volunteers to evaluate the performance of the adversarial examples. The experimental results show that, compared with existing approaches, these approaches can effectively improve the success rate of the targeted adversarial example generation. The code is publicly available at https://github.com/HanboCai/FGMGE.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing