{"title":"Superradiation of Mobile Oscillators","authors":"E. Poklonskiy, Stanislav Totkal","doi":"10.26565/2312-4334-2022-3-02","DOIUrl":null,"url":null,"abstract":"The paper considers the development of the process of superradiance of radiating oscillators interacting with each other by means of an electromagnetic field. The interaction of oscillators occurs both with the nearest neighbors and with all other oscillators in the system. In this case, the possibility of longitudinal motion of oscillators along the system, due to the action of the Lorentz force, is taken into account. It is shown that, regardless of the motion of the oscillators, for example, due to their different masses, the maximum attainable amplitude of the generation field changes little. However, the radiation efficiency depends on how this field is distributed in the longitudinal direction. In the case of a shift of the field maximum towards the ends of the system, the radiation efficiency can noticeably increase. In addition, the direction of the phase velocity of the external initiating field is important, which accelerates the process of phase synchronization of the oscillators. This can also affect the ejection of particles outside the initial region, and here the total number of ejected particles and their speed turn out to be important. It is discussed how the density of oscillators and the size of the region occupied by oscillators will change.","PeriodicalId":48765,"journal":{"name":"3 Biotech","volume":"71 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26565/2312-4334-2022-3-02","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper considers the development of the process of superradiance of radiating oscillators interacting with each other by means of an electromagnetic field. The interaction of oscillators occurs both with the nearest neighbors and with all other oscillators in the system. In this case, the possibility of longitudinal motion of oscillators along the system, due to the action of the Lorentz force, is taken into account. It is shown that, regardless of the motion of the oscillators, for example, due to their different masses, the maximum attainable amplitude of the generation field changes little. However, the radiation efficiency depends on how this field is distributed in the longitudinal direction. In the case of a shift of the field maximum towards the ends of the system, the radiation efficiency can noticeably increase. In addition, the direction of the phase velocity of the external initiating field is important, which accelerates the process of phase synchronization of the oscillators. This can also affect the ejection of particles outside the initial region, and here the total number of ejected particles and their speed turn out to be important. It is discussed how the density of oscillators and the size of the region occupied by oscillators will change.
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.