Classification framework and semantic labeling for Big Earth Data

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2022-10-04 DOI:10.1080/20964471.2022.2123946
Juanle Wang, Kun Bu, Dongmei Yan, Jingyue Wang, Bowen Duan, M. Zhang, Guojin He
{"title":"Classification framework and semantic labeling for Big Earth Data","authors":"Juanle Wang, Kun Bu, Dongmei Yan, Jingyue Wang, Bowen Duan, M. Zhang, Guojin He","doi":"10.1080/20964471.2022.2123946","DOIUrl":null,"url":null,"abstract":"ABSTRACT Big Earth Data refers to the multidimensional integration and association of scientific data, including geography, resources, environment, ecology, and biology. An effective data classification system and label management strategy are important foundations for long-term management of data resources. The objective of this study was to construct a classification system and realize multidimensional semantic data label management for the Big Earth Data Science Engineering Program (CASEarth). This study constructed two sets of classification and coding systems that realize classification by mapping each other; namely, the geosphere-level and Sustainable Development Goals (SDGs) indicator classifications. This technique was based on natural language processing technology and solved problems with subject-word segmentation, weight calculation, and dynamic matching. A prototype system for classification and label management was constructed based on existing CASEarth datasets of more than 1,100. Furthermore, we expect our study to provide the methodology and technical support for user-oriented classification and label management services for Big Earth Data.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"34 1","pages":"886 - 903"},"PeriodicalIF":4.2000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2022.2123946","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Big Earth Data refers to the multidimensional integration and association of scientific data, including geography, resources, environment, ecology, and biology. An effective data classification system and label management strategy are important foundations for long-term management of data resources. The objective of this study was to construct a classification system and realize multidimensional semantic data label management for the Big Earth Data Science Engineering Program (CASEarth). This study constructed two sets of classification and coding systems that realize classification by mapping each other; namely, the geosphere-level and Sustainable Development Goals (SDGs) indicator classifications. This technique was based on natural language processing technology and solved problems with subject-word segmentation, weight calculation, and dynamic matching. A prototype system for classification and label management was constructed based on existing CASEarth datasets of more than 1,100. Furthermore, we expect our study to provide the methodology and technical support for user-oriented classification and label management services for Big Earth Data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大地球数据的分类框架与语义标注
大地球数据是指地理、资源、环境、生态、生物等科学数据的多维整合与关联。有效的数据分类体系和标签管理策略是数据资源长期管理的重要基础。本研究的目的是为大地球数据科学工程项目(CASEarth)构建分类系统,实现多维语义数据标签管理。本研究构建了两套通过相互映射实现分类的分类编码系统;即地圈级和可持续发展目标(SDGs)指标分类。该技术以自然语言处理技术为基础,解决了主题词分词、权重计算和动态匹配等问题。基于现有的1100多个CASEarth数据集,构建了分类和标签管理的原型系统。此外,我们期望我们的研究能为面向用户的地球大数据分类和标签管理服务提供方法和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1